These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 27965086)
1. The effect of poly(ADP-ribosyl)ation inhibition on the porcine cumulus-oocyte complex during in vitro maturation. Kim DH; Lee HR; Kim MG; Lee JS; Jin SJ; Lee HT Biochem Biophys Res Commun; 2017 Jan; 483(1):752-758. PubMed ID: 27965086 [TBL] [Abstract][Full Text] [Related]
2. Effects of coculture with cumulus-derived somatic cells on in vitro maturation of porcine oocytes. Yoon JD; Jeon Y; Cai L; Hwang SU; Kim E; Lee E; Kim DY; Hyun SH Theriogenology; 2015 Jan; 83(2):294-305. PubMed ID: 25442018 [TBL] [Abstract][Full Text] [Related]
3. Effects of growth differentiation factor 9 and bone morphogenetic protein 15 on the in vitro maturation of porcine oocytes. Lin ZL; Li YH; Xu YN; Wang QL; Namgoong S; Cui XS; Kim NH Reprod Domest Anim; 2014 Apr; 49(2):219-27. PubMed ID: 24313324 [TBL] [Abstract][Full Text] [Related]
4. Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro: comparison with gonadotropins. Procházka R; Petlach M; Nagyová E; Nemcová L Reproduction; 2011 Apr; 141(4):425-35. PubMed ID: 21239527 [TBL] [Abstract][Full Text] [Related]
5. The effect of lysophosphatidic acid during in vitro maturation of bovine cumulus-oocyte complexes: cumulus expansion, glucose metabolism and expression of genes involved in the ovulatory cascade, oocyte and blastocyst competence. Boruszewska D; Sinderewicz E; Kowalczyk-Zieba I; Grycmacher K; Woclawek-Potocka I Reprod Biol Endocrinol; 2015 May; 13():44. PubMed ID: 25981539 [TBL] [Abstract][Full Text] [Related]
6. Interactions between oocytes and cumulus cells during in vitro maturation of porcine cumulus-oocyte complexes in a chemically defined medium: effect of denuded oocytes on cumulus expansion and oocyte maturation. Appeltant R; Somfai T; Nakai M; Bodó S; Maes D; Kikuchi K; Van Soom A Theriogenology; 2015 Mar; 83(4):567-76. PubMed ID: 25467769 [TBL] [Abstract][Full Text] [Related]
7. GDF8 activates p38 MAPK signaling during porcine oocyte maturation in vitro. Yoon JD; Hwang SU; Kim E; Jin M; Kim S; Hyun SH Theriogenology; 2017 Oct; 101():123-134. PubMed ID: 28708509 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional glass scaffolds improve the In Vitro maturation of porcine cumulus-oocyte complexes and subsequent embryonic development after parthenogenetic activation. Wang Y; Shen P; Wang Y; Jia R; Chen M; Yan X; Li Z; Yang X; He H; Shi D; Lu F Theriogenology; 2024 Feb; 215():58-66. PubMed ID: 38008049 [TBL] [Abstract][Full Text] [Related]
9. Effect of oocyte-secreted factors on porcine in vitro maturation, cumulus expansion and developmental competence of parthenotes. Gomez MN; Kang JT; Koo OJ; Kim SJ; Kwon DK; Park SJ; Atikuzzaman M; Hong SG; Jang G; Lee BC Zygote; 2012 May; 20(2):135-45. PubMed ID: 21791167 [TBL] [Abstract][Full Text] [Related]
10. MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells. Pan B; Toms D; Shen W; Li J Am J Physiol Endocrinol Metab; 2015 Mar; 308(6):E525-34. PubMed ID: 25628423 [TBL] [Abstract][Full Text] [Related]
11. Effects of oocyte-derived growth factors on the growth of porcine oocytes and oocyte-cumulus cell complexes in vitro. Morikawa R; Lee J; Miyano T J Reprod Dev; 2021 Aug; 67(4):273-281. PubMed ID: 34261834 [TBL] [Abstract][Full Text] [Related]
12. Natriuretic peptides improve the developmental competence of in vitro cultured porcine oocytes. Zhang Y; Wang H; Liu W; Yang Y; Wang X; Zhang Z; Guo Q; Wang C; Xia G Reprod Biol Endocrinol; 2017 May; 15(1):41. PubMed ID: 28558842 [TBL] [Abstract][Full Text] [Related]
13. Expression of focal adhesion kinase in mouse cumulus-oocyte complexes, and effect of phosphorylation at Tyr397 on cumulus expansion. Ohtake J; Sakurai M; Hoshino Y; Tanemura K; Sato E Mol Reprod Dev; 2015 Mar; 82(3):218-31. PubMed ID: 25692763 [TBL] [Abstract][Full Text] [Related]
14. Production of collared peccary (Pecari tajacu Linnaeus, 1758) parthenogenic embryos following different oocyte chemical activation and in vitro maturation conditions. Borges AA; Santos MVO; Nascimento LE; Lira GPO; Praxedes ÉA; Oliveira MF; Silva AR; Pereira AF Theriogenology; 2020 Jan; 142():320-327. PubMed ID: 31711691 [TBL] [Abstract][Full Text] [Related]
15. The regulation of autophagy in porcine blastocysts: Regulation of PARylation-mediated autophagy via mammalian target of rapamycin complex 1 (mTORC1) signaling. Lee HR; Kim DH; Kim MG; Lee JS; Hwang JH; Lee HT Biochem Biophys Res Commun; 2016 May; 473(4):899-906. PubMed ID: 27040764 [TBL] [Abstract][Full Text] [Related]
16. Poly(ADP-ribosyl)ation is involved in pro-survival autophagy in porcine blastocysts. Lee HR; Gupta MK; Kim DH; Hwang JH; Kwon B; Lee HT Mol Reprod Dev; 2016 Jan; 83(1):37-49. PubMed ID: 26440043 [TBL] [Abstract][Full Text] [Related]
17. The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Kwak SS; Cheong SA; Jeon Y; Lee E; Choi KC; Jeung EB; Hyun SH Theriogenology; 2012 Jul; 78(1):86-101. PubMed ID: 22445189 [TBL] [Abstract][Full Text] [Related]
18. Effect of dibutyryl cyclic adenosine monophosphate on reactive oxygen species and glutathione of porcine oocytes, apoptosis of cumulus cells, and embryonic development. Park SH; Yu IJ Zygote; 2013 Aug; 21(3):305-13. PubMed ID: 23171604 [TBL] [Abstract][Full Text] [Related]
19. Toxicity evaluation of ethanol treatment during in vitro maturation of porcine oocytes and subsequent embryonic development following parthenogenetic activation and in vitro fertilization. Lee S; Kim E; Hyun SH Int J Mol Med; 2014 Nov; 34(5):1372-80. PubMed ID: 25190223 [TBL] [Abstract][Full Text] [Related]
20. Effect of co-culture canine cumulus and oviduct cells with porcine oocytes during maturation and subsequent embryo development of parthenotes in vitro. Lee SH; Oh HJ; Kim MJ; Kim GA; Choi YB; Jo YK; Setyawan EMN; Lee BC Theriogenology; 2018 Jan; 106():108-116. PubMed ID: 29049922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]