These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. An Agonist of the Protective Factor SIRT1 Improves Functional Recovery and Promotes Neuronal Survival by Attenuating Inflammation after Spinal Cord Injury. Chen H; Ji H; Zhang M; Liu Z; Lao L; Deng C; Chen J; Zhong G J Neurosci; 2017 Mar; 37(11):2916-2930. PubMed ID: 28193684 [TBL] [Abstract][Full Text] [Related]
5. A re-assessment of the effects of treatment with a non-steroidal anti-inflammatory (ibuprofen) on promoting axon regeneration via RhoA inhibition after spinal cord injury. Sharp KG; Yee KM; Stiles TL; Aguilar RM; Steward O Exp Neurol; 2013 Oct; 248():321-37. PubMed ID: 23830951 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of glial proliferation, promotion of axonal growth and myelin production by synthetic glycolipid: A new approach for spinal cord injury treatment. García-Álvarez I; Fernández-Mayoralas A; Moreno-Lillo S; Sánchez-Sierra M; Nieto-Sampedro M; Doncel-Pérez E Restor Neurol Neurosci; 2015; 33(6):895-910. PubMed ID: 26484699 [TBL] [Abstract][Full Text] [Related]
7. Blockade of IL-6 signaling by MR16-1 inhibits reduction of docosahexaenoic acid-containing phosphatidylcholine levels in a mouse model of spinal cord injury. Arima H; Hanada M; Hayasaka T; Masaki N; Omura T; Xu D; Hasegawa T; Togawa D; Yamato Y; Kobayashi S; Yasuda T; Matsuyama Y; Setou M Neuroscience; 2014 Jun; 269():1-10. PubMed ID: 24657456 [TBL] [Abstract][Full Text] [Related]
8. Tegaserod, a small compound mimetic of polysialic acid, promotes functional recovery after spinal cord injury in mice. Pan HC; Shen YQ; Loers G; Jakovcevski I; Schachner M Neuroscience; 2014 Sep; 277():356-66. PubMed ID: 25014876 [TBL] [Abstract][Full Text] [Related]
9. Two-photon-excited fluorescence microscopy as a tool to investigate the efficacy of methylprednisolone in a mouse spinal cord injury model. Zhang Y; Zhang L; Shen J; Chen C; Mao Z; Li W; Gan WB; Tang P Spine (Phila Pa 1976); 2014 Apr; 39(8):E493-9. PubMed ID: 24480947 [TBL] [Abstract][Full Text] [Related]
10. In vivo two-photon imaging reveals a role of progesterone in reducing axonal dieback after spinal cord injury in mice. Yang Z; Xie W; Ju F; Khan A; Zhang S Neuropharmacology; 2017 Apr; 116():30-37. PubMed ID: 27965141 [TBL] [Abstract][Full Text] [Related]
11. A derivative of the CRMP2 binding compound lanthionine ketimine provides neuroprotection in a mouse model of cerebral ischemia. Nada SE; Tulsulkar J; Raghavan A; Hensley K; Shah ZA Neurochem Int; 2012 Dec; 61(8):1357-63. PubMed ID: 23036362 [TBL] [Abstract][Full Text] [Related]
12. Functional Recovery of Carbon Nanotube/Nafion Nanocomposite in Rat Model of Spinal Cord Injury. Imani S; Zagari Z; Rezaei Zarchi S; Jorjani M; Nasri S Artif Cells Nanomed Biotechnol; 2016; 44(1):144-9. PubMed ID: 25861814 [TBL] [Abstract][Full Text] [Related]
13. Low-dose fractionated irradiation promotes axonal regeneration beyond reactive gliosis and facilitates locomotor function recovery after spinal cord injury in beagle dogs. Zhang Q; Xiong Y; Zhu B; Zhu B; Tian D; Wang W Eur J Neurosci; 2017 Nov; 46(9):2507-2518. PubMed ID: 28921700 [TBL] [Abstract][Full Text] [Related]
14. Isorhamnetin promotes functional recovery in rats with spinal cord injury by abating oxidative stress and modulating M2 macrophages/microglia polarization. Chen F; Hu M; Shen Y; Zhu W; Cao A; Ni B; Qian J; Yang J Eur J Pharmacol; 2021 Mar; 895():173878. PubMed ID: 33453223 [TBL] [Abstract][Full Text] [Related]
15. Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice. Jeong SJ; Cooper JG; Ifergan I; McGuire TL; Xu D; Hunter Z; Sharma S; McCarthy D; Miller SD; Kessler JA Neurobiol Dis; 2017 Dec; 108():73-82. PubMed ID: 28823935 [TBL] [Abstract][Full Text] [Related]
16. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. Wang C; Wang Q; Lou Y; Xu J; Feng Z; Chen Y; Tang Q; Zheng G; Zhang Z; Wu Y; Tian N; Zhou Y; Xu H; Zhang X J Cell Mol Med; 2018 Feb; 22(2):1148-1166. PubMed ID: 29148269 [TBL] [Abstract][Full Text] [Related]
17. Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury. Lee JS; Yang CC; Kuo YM; Sze CI; Hsu JY; Huang YH; Tzeng SF; Tsai CL; Chen HH; Jou IM Spine (Phila Pa 1976); 2012 Jan; 37(1):10-7. PubMed ID: 22024901 [TBL] [Abstract][Full Text] [Related]
18. P2Y12-targeted modulation of microglial phenotypes: A novel therapeutic strategy for enhanced axonal regeneration post-spinal cord injury. Zhang K; Wen R; Ma W; Ji H; He X; Yang Z; Liu D; Li X Life Sci; 2024 Nov; 357():123057. PubMed ID: 39277132 [TBL] [Abstract][Full Text] [Related]
19. Complement C5a is detrimental to histological and functional locomotor recovery after spinal cord injury in mice. Li L; Xiong ZY; Qian ZM; Zhao TZ; Feng H; Hu S; Hu R; Ke Y; Lin J Neurobiol Dis; 2014 Jun; 66():74-82. PubMed ID: 24607885 [TBL] [Abstract][Full Text] [Related]
20. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats. Samantaray S; Das A; Matzelle DC; Yu SP; Wei L; Varma A; Ray SK; Banik NL J Neurochem; 2016 May; 137(4):604-17. PubMed ID: 26998684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]