BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 27965121)

  • 1. The application of microbeads to microfluidic systems for enhanced detection and purification of biomolecules.
    Pinto IF; Caneira CR; Soares RR; Madaboosi N; Aires-Barros MR; Conde JP; Azevedo AM; Chu V
    Methods; 2017 Mar; 116():112-124. PubMed ID: 27965121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single layer linear array of microbeads for multiplexed analysis of DNA and proteins.
    Yue W; Zou H; Jin Q; Li CW; Xu T; Fu H; Tzang LC; Sun H; Zhao J; Yang M
    Biosens Bioelectron; 2014 Apr; 54():297-305. PubMed ID: 24287420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic chips designed for measuring biomolecules through a microbead-based quantum dot fluorescence assay.
    Yun KS; Lee D; Kim HS; Yoon E
    Methods Mol Biol; 2009; 544():53-67. PubMed ID: 19488693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterning microbeads inside poly(dimethylsiloxane) microfluidic channels and its application for immobilized microfluidic enzyme reactors.
    Zhang Q; Xu JJ; Chen HY
    Electrophoresis; 2006 Dec; 27(24):4943-51. PubMed ID: 17117456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing an ultra non-fouling SU-8 and PDMS hybrid microfluidic device by poly(amidoamine) engraftment.
    Qin Y; Yeh P; Hao X; Cao X
    Colloids Surf B Biointerfaces; 2015 Mar; 127():247-55. PubMed ID: 25687095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roll-to-roll fabrication of integrated PDMS-paper microfluidics for nucleic acid amplification.
    Hiltunen J; Liedert C; Hiltunen M; Huttunen OH; Hiitola-Keinänen J; Aikio S; Harjanne M; Kurkinen M; Hakalahti L; Lee LP
    Lab Chip; 2018 May; 18(11):1552-1559. PubMed ID: 29708259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.
    Zhang H; Hu X; Fu X
    Biosens Bioelectron; 2014 Jul; 57():22-9. PubMed ID: 24534576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics.
    Tirapu-Azpiroz J; Temiz Y; Delamarche E
    Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed microfluidic blotting of proteins and nucleic acids by parallel, serpentine microchannels.
    He S; Zhang Y; Wang P; Xu X; Zhu K; Pan W; Liu W; Cai K; Sun J; Zhang W; Jiang X
    Lab Chip; 2015 Jan; 15(1):105-12. PubMed ID: 25342223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads.
    Lin YH; Wang SH; Wu MH; Pan TM; Lai CS; Luo JD; Chiou CC
    Biosens Bioelectron; 2013 May; 43():328-35. PubMed ID: 23356998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pump-free paper/PDMS hybrid microfluidic chip for bacteria enrichment and fast detection.
    Zhu Z; Lv Z; Wang L; Tan H; Xu Y; Li S; Chen L
    Talanta; 2024 Aug; 275():126155. PubMed ID: 38678928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholera toxin subunit B detection in microfluidic devices.
    Bunyakul N; Edwards KA; Promptmas C; Baeumner AJ
    Anal Bioanal Chem; 2009 Jan; 393(1):177-86. PubMed ID: 18777170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.
    Sochol RD; Lu A; Lei J; Iwai K; Lee LP; Lin L
    Lab Chip; 2014 May; 14(9):1585-94. PubMed ID: 24632685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target delivery in a microfluidic immunosensor.
    Golden JP; Floyd-Smith TM; Mott DR; Ligler FS
    Biosens Bioelectron; 2007 May; 22(11):2763-7. PubMed ID: 17223338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunoassays in microfluidic systems.
    Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2010 Jun; 397(3):991-1007. PubMed ID: 20422163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic biosensor based on nucleic acid sequence recognition.
    Kwakye S; Baeumner A
    Anal Bioanal Chem; 2003 Aug; 376(7):1062-8. PubMed ID: 12830353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective functionalisation of PDMS-based photonic lab on a chip for biosensing.
    Ibarlucea B; Fernández-Sánchez C; Demming S; Büttgenbach S; Llobera A
    Analyst; 2011 Sep; 136(17):3496-502. PubMed ID: 21336349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.