BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27965518)

  • 1. Non-invasive activation of optogenetic actuators.
    Birkner E; Berglund K; Klein ME; Augustine GJ; Hochgeschwender U
    Proc SPIE Int Soc Opt Eng; 2014 Feb; 8928():. PubMed ID: 27965518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Step-function luminopsins for bimodal prolonged neuromodulation.
    Berglund K; Fernandez AM; Gutekunst CN; Hochgeschwender U; Gross RE
    J Neurosci Res; 2020 Mar; 98(3):422-436. PubMed ID: 30957296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons.
    Berglund K; Birkner E; Augustine GJ; Hochgeschwender U
    PLoS One; 2013; 8(3):e59759. PubMed ID: 23544095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel luciferase-opsin combinations for improved luminopsins.
    Park SY; Song SH; Palmateer B; Pal A; Petersen ED; Shall GP; Welchko RM; Ibata K; Miyawaki A; Augustine GJ; Hochgeschwender U
    J Neurosci Res; 2020 Mar; 98(3):410-421. PubMed ID: 28862809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation.
    Berglund K; Clissold K; Li HE; Wen L; Park SY; Gleixner J; Klein ME; Lu D; Barter JW; Rossi MA; Augustine GJ; Yin HH; Hochgeschwender U
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):E358-67. PubMed ID: 26733686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined Optogenetic and Chemogenetic Control of Neurons.
    Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U
    Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Locomotor Recovery in a Rat Model of Spinal Cord Injury by BioLuminescent-OptoGenetic (BL-OG) Stimulation with an Enhanced Luminopsin.
    Ikefuama EC; Kendziorski GE; Anderson K; Shafau L; Prakash M; Hochgeschwender U; Petersen ED
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioluminescence-Optogenetics: A Practical Guide.
    Stern MA; Skelton H; Fernandez AM; Gutekunst CN; Berglund K; Gross RE
    Methods Mol Biol; 2022; 2525():333-346. PubMed ID: 35836081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining parameters of specificity for bioluminescent optogenetic activation of neurons using in vitro multi electrode arrays (MEA).
    Prakash M; Medendorp WE; Hochgeschwender U
    J Neurosci Res; 2020 Mar; 98(3):437-447. PubMed ID: 30152529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved trafficking and expression of luminopsins for more efficient optical and pharmacological control of neuronal activity.
    Zhang JY; Tung JK; Wang Z; Yu SP; Gross RE; Wei L; Berglund K
    J Neurosci Res; 2020 Mar; 98(3):481-490. PubMed ID: 31670406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Motor and Sensory Axon Regeneration after Peripheral Nerve Injury Using Bioluminescent Optogenetics.
    Ecanow A; Berglund K; Carrasco D; Isaacson R; English AW
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory luminopsins: genetically-encoded bioluminescent opsins for versatile, scalable, and hardware-independent optogenetic inhibition.
    Tung JK; Gutekunst CA; Gross RE
    Sci Rep; 2015 Sep; 5():14366. PubMed ID: 26399324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioluminescence-Optogenetics.
    Berglund K; Stern MA; Gross RE
    Adv Exp Med Biol; 2021; 1293():281-293. PubMed ID: 33398820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The BioLuminescent-OptoGenetic in vivo response to coelenterazine is proportional, sensitive, and specific in neocortex.
    Gomez-Ramirez M; More AI; Friedman NG; Hochgeschwender U; Moore CI
    J Neurosci Res; 2020 Mar; 98(3):471-480. PubMed ID: 31544973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges for Therapeutic Applications of Opsin-Based Optogenetic Tools in Humans.
    Shen Y; Campbell RE; Côté DC; Paquet ME
    Front Neural Circuits; 2020; 14():41. PubMed ID: 32760252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioluminescence-driven optogenetic activation of transplanted neural precursor cells improves motor deficits in a Parkinson's disease mouse model.
    Zenchak JR; Palmateer B; Dorka N; Brown TM; Wagner LM; Medendorp WE; Petersen ED; Prakash M; Hochgeschwender U
    J Neurosci Res; 2020 Mar; 98(3):458-468. PubMed ID: 29577367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioluminescent Optogenetics 2.0: Harnessing Bioluminescence to Activate Photosensory Proteins In Vitro and In Vivo.
    Crespo EL; Bjorefeldt A; Prakash M; Hochgeschwender U
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34424228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coelenterazine-Type Bioluminescence-Induced Optical Probes for Sensing and Controlling Biological Processes.
    Jiang T; Song J; Zhang Y
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo calcium recordings and channelrhodopsin-2 activation through an optical fiber.
    Adelsberger H; Grienberger C; Stroh A; Konnerth A
    Cold Spring Harb Protoc; 2014 Oct; 2014(10):pdb.prot084145. PubMed ID: 25275110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca
    Yang J; Cumberbatch D; Centanni S; Shi SQ; Winder D; Webb D; Johnson CH
    Nat Commun; 2016 Oct; 7():13268. PubMed ID: 27786307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.