These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 27965542)

  • 1. Releasing the Cortical Brake by Non-Invasive Electromagnetic Stimulation? rTMS Induces LTD of GABAergic Neurotransmission.
    Lenz M; Vlachos A
    Front Neural Circuits; 2016; 10():96. PubMed ID: 27965542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning-induced bidirectional enhancement of inhibitory synaptic metaplasticity.
    Kundu S; Paul B; Reuevni I; Lamprecht R; Barkai E
    J Physiol; 2024 May; 602(10):2343-2358. PubMed ID: 38654583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High frequency repetitive Transcranial Magnetic Stimulation promotes long lasting phrenic motoneuron excitability via GABAergic networks.
    Michel-Flutot P; Zholudeva LV; Randelman ML; Deramaudt TB; Mansart A; Alvarez JC; Lee KZ; Petitjean M; Bonay M; Lane MA; Vinit S
    Respir Physiol Neurobiol; 2021 Oct; 292():103704. PubMed ID: 34058433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetitive magnetic stimulation induces plasticity of inhibitory synapses.
    Lenz M; Galanis C; Müller-Dahlhaus F; Opitz A; Wierenga CJ; Szabó G; Ziemann U; Deller T; Funke K; Vlachos A
    Nat Commun; 2016 Jan; 7():10020. PubMed ID: 26743822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation.
    Di Lazzaro V; Dileone M; Pilato F; Capone F; Musumeci G; Ranieri F; Ricci V; Bria P; Di Iorio R; de Waure C; Pasqualetti P; Profice P
    J Neurophysiol; 2011 May; 105(5):2150-6. PubMed ID: 21346213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation.
    Eichler A; Kleidonas D; Turi Z; Fliegauf M; Kirsch M; Pfeifer D; Masuda T; Prinz M; Lenz M; Vlachos A
    J Neurosci; 2023 Apr; 43(17):3042-3060. PubMed ID: 36977586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repetitive transcranial magnetic stimulation recovers cortical map plasticity induced by sensory deprivation due to deafferentiation.
    Kloosterboer E; Funke K
    J Physiol; 2019 Aug; 597(15):4025-4051. PubMed ID: 31145483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks.
    Anil S; Lu H; Rotter S; Vlachos A
    PLoS Comput Biol; 2023 Nov; 19(11):e1011027. PubMed ID: 37956202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The many forms and functions of long term plasticity at GABAergic synapses.
    Maffei A
    Neural Plast; 2011; 2011():254724. PubMed ID: 21789285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.
    Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR
    J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training.
    Stefan K; Wycislo M; Gentner R; Schramm A; Naumann M; Reiners K; Classen J
    Cereb Cortex; 2006 Mar; 16(3):376-85. PubMed ID: 15930370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced GABAergic cortical inhibition in aging and depression.
    Lissemore JI; Bhandari A; Mulsant BH; Lenze EJ; Reynolds CF; Karp JF; Rajji TK; Noda Y; Zomorrodi R; Sibille E; Daskalakis ZJ; Blumberger DM
    Neuropsychopharmacology; 2018 Oct; 43(11):2277-2284. PubMed ID: 29849055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biologically plausible model of associative memory which uses disinhibition rather than long-term potentiation.
    Vogel D
    Brain Cogn; 2001 Mar; 45(2):212-28. PubMed ID: 11237367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation.
    Iyer MB; Schleper N; Wassermann EM
    J Neurosci; 2003 Nov; 23(34):10867-72. PubMed ID: 14645480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network.
    Battelli L; Grossman ED; Plow EB
    Brain Stimul; 2017; 10(2):263-269. PubMed ID: 27838275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Network Inhibition and Decay of Early-Phase LTP in the Hippocampal CA1 Subfield of the Amazon Rodent
    Reyes-Garcia SZ; de Almeida AG; Ortiz-Villatoro NN; Scorza FA; Cavalheiro EA; Scorza CA
    Front Neural Circuits; 2018; 12():81. PubMed ID: 30337859
    [No Abstract]   [Full Text] [Related]  

  • 17. Low-intensity repetitive transcranial magnetic stimulation requires concurrent visual system activity to modulate visual evoked potentials in adult mice.
    Makowiecki K; Garrett A; Harvey AR; Rodger J
    Sci Rep; 2018 Apr; 8(1):5792. PubMed ID: 29643395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial magnetic stimulation.
    Lefaucheur JP
    Handb Clin Neurol; 2019; 160():559-580. PubMed ID: 31277876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study and modulation of human cortical excitability with transcranial magnetic stimulation.
    Pascual-Leone A; Tormos JM; Keenan J; Tarazona F; Cañete C; Catalá MD
    J Clin Neurophysiol; 1998 Jul; 15(4):333-43. PubMed ID: 9736467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory control of LTP and LTD: stability of synapse strength.
    Steele PM; Mauk MD
    J Neurophysiol; 1999 Apr; 81(4):1559-66. PubMed ID: 10200191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.