These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 27965695)
21. Herbivore-induced plant volatiles to enhance biological control in agriculture. Peñaflor MF; Bento JM Neotrop Entomol; 2013 Aug; 42(4):331-43. PubMed ID: 23949852 [TBL] [Abstract][Full Text] [Related]
22. Optimizing Crops for Biocontrol of Pests and Disease. Stenberg JA; Heil M; Åhman I; Björkman C Trends Plant Sci; 2015 Nov; 20(11):698-712. PubMed ID: 26447042 [TBL] [Abstract][Full Text] [Related]
23. Bringing Fundamental Insights of Induced Resistance to Agricultural Management of Herbivore Pests. Poelman EH; Bourne ME; Croijmans L; Cuny MAC; Delamore Z; Joachim G; Kalisvaart SN; Kamps BBJ; Longuemare M; Suijkerbuijk HAC; Zhang NX J Chem Ecol; 2023 Jun; 49(5-6):218-229. PubMed ID: 37138167 [TBL] [Abstract][Full Text] [Related]
24. New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores. Rodriguez-Saona CR; Frost CJ Plant Signal Behav; 2010 Jan; 5(1):58-60. PubMed ID: 20592811 [TBL] [Abstract][Full Text] [Related]
25. Effects of Bacillus thuringiensis on non-target herbivore and natural enemy assemblages in tropical irrigated rice. Schoenly KG; Cohen MB; Barrion AT; Zhang W; Gaolach B; Viajante VD Environ Biosafety Res; 2003; 2(3):181-206. PubMed ID: 15612416 [TBL] [Abstract][Full Text] [Related]
26. Chemical ecology in conservation biocontrol: new perspectives for plant protection. Kansman JT; Jaramillo JL; Ali JG; Hermann SL Trends Plant Sci; 2023 Oct; 28(10):1166-1177. PubMed ID: 37271617 [TBL] [Abstract][Full Text] [Related]
27. Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pests and to improve crop yield. Hiltpold I; Turlings TC J Chem Ecol; 2012 Jun; 38(6):641-50. PubMed ID: 22592335 [TBL] [Abstract][Full Text] [Related]
28. Non-host plant odors influence the tritrophic interaction between tomato, its foliar herbivore Adams B; Yusuf AA; Torto B; Khamis FM Front Plant Sci; 2023; 14():1014865. PubMed ID: 37035056 [TBL] [Abstract][Full Text] [Related]
29. Plant volatiles: new perspectives for research in Brazil. Arab A; Bento JM Neotrop Entomol; 2006; 35(2):151-8. PubMed ID: 17348124 [TBL] [Abstract][Full Text] [Related]
30. Effect of Temperature on Plant Resistance to Arthropod Pests. Nechols JR; Hough AR; Margolies DC; Ruberson JR; McCornack BP; Sandercock BK; Murray L Environ Entomol; 2020 Jun; 49(3):537-545. PubMed ID: 32280953 [TBL] [Abstract][Full Text] [Related]
31. Cascade effects of crop species richness on the diversity of pest insects and their natural enemies. Shi P; Hui C; Men X; Zhao Z; Ouyang F; Ge F; Jin X; Cao H; Li BL Sci China Life Sci; 2014 Jul; 57(7):718-25. PubMed ID: 24907938 [TBL] [Abstract][Full Text] [Related]
32. Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Kennedy GG Annu Rev Entomol; 2003; 48():51-72. PubMed ID: 12194909 [TBL] [Abstract][Full Text] [Related]
33. Companion and Smart Plants: Scientific Background to Promote Conservation Biological Control. Blassioli-Moraes MC; Venzon M; Silveira LCP; Gontijo LM; Togni PHB; Sujii ER; Haro MM; Borges M; Michereff MFF; de Aquino MFS; Laumann RA; Caulfield J; Birkett M Neotrop Entomol; 2022 Apr; 51(2):171-187. PubMed ID: 35020181 [TBL] [Abstract][Full Text] [Related]
34. Using plant chemistry to improve interactions between plants, herbivores and their natural enemies: challenges and opportunities. Erb M; Züst T; Robert CAM Curr Opin Biotechnol; 2021 Aug; 70():262-265. PubMed ID: 34242994 [TBL] [Abstract][Full Text] [Related]
35. Crop domestication and its impact on naturally selected trophic interactions. Chen YH; Gols R; Benrey B Annu Rev Entomol; 2015 Jan; 60():35-58. PubMed ID: 25341108 [TBL] [Abstract][Full Text] [Related]
36. Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans. Torres JB; Ruberson JR Transgenic Res; 2008 Jun; 17(3):345-54. PubMed ID: 17570072 [TBL] [Abstract][Full Text] [Related]
37. Indirect plant defense against insect herbivores: a review. Aljbory Z; Chen MS Insect Sci; 2018 Feb; 25(1):2-23. PubMed ID: 28035791 [TBL] [Abstract][Full Text] [Related]
38. [Effects and mechanisms of nitrogen fertilizers on soil and tritrophic interactions in Chinese medicinal plants ecosystem]. Ge Y; Wan XF; Wang S; Kang CZ; Zhang WJ; Lyu CG; Sun JH; Guo LP Zhongguo Zhong Yao Za Zhi; 2021 Apr; 46(8):1893-1900. PubMed ID: 33982497 [TBL] [Abstract][Full Text] [Related]
39. Dynamic distress calls: volatile info chemicals induce and regulate defense responses during herbivory. Kutty NN; Mishra M Front Plant Sci; 2023; 14():1135000. PubMed ID: 37416879 [TBL] [Abstract][Full Text] [Related]
40. Tritrophic choice experiments with bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae. Schuler TH; Potting RP; Denholm I; Clark SJ; Clark AJ; Stewart CN; Poppy GM Transgenic Res; 2003 Jun; 12(3):351-61. PubMed ID: 12779123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]