These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27965953)

  • 21. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440.
    Yang S; Li S; Jia X
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):793-800. PubMed ID: 30864026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic Engineering of Shikimic Acid-Producing
    Sato N; Kishida M; Nakano M; Hirata Y; Tanaka T
    Front Bioeng Biotechnol; 2020; 8():569406. PubMed ID: 33015020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved terephthalic acid production from p-xylene using metabolically engineered Pseudomonas putida.
    Luo ZW; Choi KR; Lee SY
    Metab Eng; 2023 Mar; 76():75-86. PubMed ID: 36693471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic Engineering of
    Li J; Fu J; Shang Y; Wei W; Zhang P; Wang X; Ye BC
    J Agric Food Chem; 2024 Feb; 72(8):4217-4224. PubMed ID: 38356383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Yield Production of Propionate from 1,2-Propanediol by Engineered
    Shi Y; Li R; Zheng J; Xue Y; Tao Y; Yu B
    J Agric Food Chem; 2022 Dec; 70(51):16263-16272. PubMed ID: 36511719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering sorghum for higher 4-hydroxybenzoic acid content.
    Lin CY; Tian Y; Nelson-Vasilchik K; Hague J; Kakumanu R; Lee MY; Pidatala VR; Trinh J; De Ben CM; Dalton J; Northen TR; Baidoo EEK; Simmons BA; Gladden JM; Scown CD; Putnam DH; Kausch AP; Scheller HV; Eudes A
    Metab Eng Commun; 2022 Dec; 15():e00207. PubMed ID: 36188638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of Escherichia coli W3110 strain by incorporating genome-level modifications and synthetic plasmid modules to enhance L-Dopa production from glycerol.
    Das A; Tyagi N; Verma A; Akhtar S; Mukherjee KJ
    Prep Biochem Biotechnol; 2018; 48(8):671-682. PubMed ID: 30015557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From degrader to producer: reversing the gallic acid metabolism of Pseudomonas putida KT2440.
    Dias FMS; Pantoja RK; Gomez JGC; Silva LF
    Int Microbiol; 2023 May; 26(2):243-255. PubMed ID: 36357545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply.
    Davis R; Duane G; Kenny ST; Cerrone F; Guzik MW; Babu RP; Casey E; O'Connor KE
    Biotechnol Bioeng; 2015 Apr; 112(4):725-33. PubMed ID: 25311981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering
    Nitschel R; Ankenbauer A; Welsch I; Wirth NT; Massner C; Ahmad N; McColm S; Borges F; Fotheringham I; Takors R; Blombach B
    Eng Life Sci; 2020 Apr; 20(5-6):148-159. PubMed ID: 32874178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
    Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z
    Bioresour Technol; 2014 Aug; 166():64-71. PubMed ID: 24905044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced production of para-hydroxybenzoic acid by genetically engineered Saccharomyces cerevisiae.
    Averesch NJH; Prima A; Krömer JO
    Bioprocess Biosyst Eng; 2017 Aug; 40(8):1283-1289. PubMed ID: 28528488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bio-production of high-purity propionate by engineering L-threonine degradation pathway in Pseudomonas putida.
    Ma C; Mu Q; Wang L; Shi Y; Zhu L; Zhang S; Xue Y; Tao Y; Ma Y; Yu B
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5303-5313. PubMed ID: 32333052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering the lva operon and Optimization of Culture Conditions for Enhanced Production of 4-Hydroxyvalerate from Levulinic Acid in Pseudomonas putida KT2440.
    Sathesh-Prabu C; Lee SK
    J Agric Food Chem; 2019 Mar; 67(9):2540-2546. PubMed ID: 30773878
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production.
    Wynands B; Lenzen C; Otto M; Koch F; Blank LM; Wierckx N
    Metab Eng; 2018 May; 47():121-133. PubMed ID: 29548982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying NAD(P)H production in the upper Entner-Doudoroff pathway from Pseudomonas putida KT2440.
    Olavarria K; Marone MP; da Costa Oliveira H; Roncallo JC; da Costa Vasconcelos FN; da Silva LF; Gomez JG
    FEBS Open Bio; 2015; 5():908-15. PubMed ID: 26702395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in
    Johnson CW; Abraham PE; Linger JG; Khanna P; Hettich RL; Beckham GT
    Metab Eng Commun; 2017 Dec; 5():19-25. PubMed ID: 29188181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.