These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27966071)

  • 1. Structure and dynamics of high- and low-density water molecules in the liquid and supercooled regimes.
    Montes de Oca JM; Rodriguez Fris JA; Accordino SR; Malaspina DC; Appignanesi GA
    Eur Phys J E Soft Matter; 2016 Dec; 39(12):124. PubMed ID: 27966071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The water supercooled regime as described by four common water models.
    Malaspina DC; Bermúdez di Lorenzo AJ; Pereyra RG; Szleifer I; Carignano MA
    J Chem Phys; 2013 Jul; 139(2):024506. PubMed ID: 23862952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative investigation of the two-state picture for water in the normal liquid and the supercooled regime.
    Accordino SR; Rodriguez Fris JA; Sciortino F; Appignanesi GA
    Eur Phys J E Soft Matter; 2011 May; 34(5):48. PubMed ID: 21573766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the performance of two structural indicators for different water models while seeking for connections between structure and dynamics in the glassy regime.
    Verde AR; Montes de Oca JM; Accordino SR; Alarcón LM; Appignanesi GA
    J Chem Phys; 2019 Jun; 150(24):244504. PubMed ID: 31255064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between the melting temperature and the temperature of maximum density for the most common models of water.
    Vega C; Abascal JL
    J Chem Phys; 2005 Oct; 123(14):144504. PubMed ID: 16238404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models.
    Paschek D
    J Chem Phys; 2004 Apr; 120(14):6674-90. PubMed ID: 15267560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations.
    Wang X; Binder K; Chen C; Koop T; Pöschl U; Su H; Cheng Y
    Phys Chem Chem Phys; 2019 Feb; 21(6):3360-3369. PubMed ID: 30693356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inherent-state melting and the onset of glassy dynamics in two-dimensional supercooled liquids.
    Fraggedakis D; Hasyim MR; Mandadapu KK
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2209144120. PubMed ID: 37000846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron Paramagnetic Resonance Measurements of Four Nitroxide Probes in Supercooled Water Explained by Molecular Dynamics Simulations.
    McMillin PJ; Alegrete M; Peric M; Luchko T
    J Phys Chem B; 2020 May; 124(19):3962-3972. PubMed ID: 32301326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water structure-forming capabilities are temperature shifted for different models.
    Shevchuk R; Prada-Gracia D; Rao F
    J Phys Chem B; 2012 Jun; 116(25):7538-43. PubMed ID: 22651887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study.
    Demontis P; Gulín-González J; Masia M; Sant M; Suffritti GB
    J Chem Phys; 2015 Jun; 142(24):244507. PubMed ID: 26133441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuations and local ice structure in model supercooled water.
    Overduin SD; Patey GN
    J Chem Phys; 2015 Sep; 143(9):094504. PubMed ID: 26342374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static and dynamic length scales in supercooled liquids: insights from molecular dynamics simulations of water and tri-propylene oxide.
    Klameth F; Henritzi P; Vogel M
    J Chem Phys; 2014 Apr; 140(14):144501. PubMed ID: 24735299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of a two-state picture for supercooled water and its connections with glassy dynamics.
    Appignanesi GA; Rodriguez Fris JA; Sciortino F
    Eur Phys J E Soft Matter; 2009 Jul; 29(3):305-10. PubMed ID: 19603209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water and other tetrahedral liquids: order, anomalies and solvation.
    Jabes BS; Nayar D; Dhabal D; Molinero V; Chakravarty C
    J Phys Condens Matter; 2012 Jul; 24(28):284116. PubMed ID: 22739063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics of supercooled water can be predicted from room temperature simulations.
    Piskulich ZA; Thompson WH
    J Chem Phys; 2020 Feb; 152(7):074505. PubMed ID: 32087653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic, diffusional, and structural anomalies in rigid-body water models.
    Agarwal M; Alam MP; Chakravarty C
    J Phys Chem B; 2011 Jun; 115(21):6935-45. PubMed ID: 21553909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common features of orientational order at the temperature of maximum density for various water models: molecular dynamics study.
    Jhon YI; No KT; Jhon MS
    J Phys Chem B; 2007 Aug; 111(33):9897-9. PubMed ID: 17672501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R; Abascal JL; Vega C
    J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.