BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27966108)

  • 1. Membrane Fusion and Infection of the Influenza Hemagglutinin.
    Smrt ST; Lorieau JL
    Adv Exp Med Biol; 2017; 966():37-54. PubMed ID: 27966108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New influenza A Virus Entry Inhibitors Derived from the Viral Fusion Peptides.
    Wu W; Lin D; Shen X; Li F; Fang Y; Li K; Xun T; Yang G; Yang J; Liu S; He J
    PLoS One; 2015; 10(9):e0138426. PubMed ID: 26382764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of Influenza Virus Envelope's Fusogenicity by Viral Fusion Inhibitors.
    Rowse M; Qiu S; Tsao J; Yamauchi Y; Wang G; Luo M
    ACS Infect Dis; 2016 Jan; 2(1):47-53. PubMed ID: 27622947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influenza Hemifusion Phenotype Depends on Membrane Context: Differences in Cell-Cell and Virus-Cell Fusion.
    Zawada KE; Okamoto K; Kasson PM
    J Mol Biol; 2018 Mar; 430(5):594-601. PubMed ID: 29355500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influenza A virus entry inhibitors targeting the hemagglutinin.
    Yang J; Li M; Shen X; Liu S
    Viruses; 2013 Jan; 5(1):352-73. PubMed ID: 23340380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides.
    Kordyukova L
    Virus Res; 2017 Jan; 227():183-199. PubMed ID: 27773768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of host trypsin-type serine proteases and influenza virus-cytokine-trypsin cycle in influenza viral pathogenesis. Pathogenesis-based therapeutic options.
    Kido H; Takahashi E; Kimoto T
    Biochimie; 2019 Nov; 166():203-213. PubMed ID: 31518617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology.
    Russell CJ
    Curr Top Microbiol Immunol; 2014; 385():93-116. PubMed ID: 25007844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteases essential for human influenza virus entry into cells and their inhibitors as potential therapeutic agents.
    Kido H; Okumura Y; Yamada H; Le TQ; Yano M
    Curr Pharm Des; 2007; 13(4):405-14. PubMed ID: 17311557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique Infectious Strategy of H5N1 Avian Influenza Virus Is Governed by the Acid-Destabilized Property of Hemagglutinin.
    Daidoji T; Watanabe Y; Arai Y; Kajikawa J; Hirose R; Nakaya T
    Viral Immunol; 2017; 30(6):398-407. PubMed ID: 28654310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity.
    Worch R; Dudek A; Borkowska P; Setny P
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition and functions of the influenza fusion peptide.
    Cross KJ; Langley WA; Russell RJ; Skehel JJ; Steinhauer DA
    Protein Pept Lett; 2009; 16(7):766-78. PubMed ID: 19601906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palmitoylation Contributes to Membrane Curvature in Influenza A Virus Assembly and Hemagglutinin-Mediated Membrane Fusion.
    Chlanda P; Mekhedov E; Waters H; Sodt A; Schwartz C; Nair V; Blank PS; Zimmerberg J
    J Virol; 2017 Nov; 91(21):. PubMed ID: 28794042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Interaction between Influenza HA Fusion Peptide and Transmembrane Domain Affects Membrane Structure.
    Lai AL; Freed JH
    Biophys J; 2015 Dec; 109(12):2523-2536. PubMed ID: 26682811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influenza Viral Hemagglutinin Peptide Inhibits Influenza Viral Entry by Shielding the Host Receptor.
    Chen Q; Guo Y
    ACS Infect Dis; 2016 Mar; 2(3):187-93. PubMed ID: 27623031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural biology of the influenza virus fusion peptide.
    Worch R
    Acta Biochim Pol; 2014; 61(3):421-6. PubMed ID: 25195144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of inhibitors of influenza virus membrane fusion: synthesis, structure-activity relationship and in vitro antiviral activity of a novel indole series.
    Brancato V; Peduto A; Wharton S; Martin S; More V; Di Mola A; Massa A; Perfetto B; Donnarumma G; Schiraldi C; Tufano MA; de Rosa M; Filosa R; Hay A
    Antiviral Res; 2013 Aug; 99(2):125-35. PubMed ID: 23707194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of stearate attachment to the hemagglutinin-esterase-fusion glycoprotein HEF of influenza C virus.
    Wang M; Ludwig K; Böttcher C; Veit M
    Cell Microbiol; 2016 May; 18(5):692-704. PubMed ID: 26518983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relating influenza virus membrane fusion kinetics to stoichiometry of neutralizing antibodies at the single-particle level.
    Otterstrom JJ; Brandenburg B; Koldijk MH; Juraszek J; Tang C; Mashaghi S; Kwaks T; Goudsmit J; Vogels R; Friesen RH; van Oijen AM
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5143-8. PubMed ID: 25404330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane structures of the hemifusion-inducing fusion peptide mutant G1S and the fusion-blocking mutant G1V of influenza virus hemagglutinin suggest a mechanism for pore opening in membrane fusion.
    Li Y; Han X; Lai AL; Bushweller JH; Cafiso DS; Tamm LK
    J Virol; 2005 Sep; 79(18):12065-76. PubMed ID: 16140782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.