BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

841 related articles for article (PubMed ID: 27966278)

  • 1. Computational resources and tools for antimicrobial peptides.
    Liu S; Fan L; Sun J; Lao X; Zheng H
    J Pept Sci; 2017 Jan; 23(1):4-12. PubMed ID: 27966278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms and consequences of bacterial resistance to antimicrobial peptides.
    Andersson DI; Hughes D; Kubicek-Sutherland JZ
    Drug Resist Updat; 2016 May; 26():43-57. PubMed ID: 27180309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections.
    Li J; Fernández-Millán P; Boix E
    Curr Top Med Chem; 2020; 20(14):1238-1263. PubMed ID: 32124698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance?
    Zharkova MS; Orlov DS; Golubeva OY; Chakchir OB; Eliseev IE; Grinchuk TM; Shamova OV
    Front Cell Infect Microbiol; 2019; 9():128. PubMed ID: 31114762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptides as an opportunity against bacterial diseases.
    Galdiero S; Falanga A; Berisio R; Grieco P; Morelli G; Galdiero M
    Curr Med Chem; 2015; 22(14):1665-77. PubMed ID: 25760092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial Peptides in Human Disease: Therapeutic Approaches. Second of Two Parts.
    Magrone T; Russo MA; Jirillo E
    Curr Pharm Des; 2018; 24(10):1148-1156. PubMed ID: 29589541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural-based Antibiofilm and Antimicrobial Peptides from Microorganisms.
    Yazici A; Ortucu S; Taskin M; Marinelli L
    Curr Top Med Chem; 2018; 18(24):2102-2107. PubMed ID: 30417789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial Peptides: the Achilles' Heel of Antibiotic Resistance?
    Lewies A; Du Plessis LH; Wentzel JF
    Probiotics Antimicrob Proteins; 2019 Jun; 11(2):370-381. PubMed ID: 30229514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological and structural effects of the conjugation of an antimicrobial decapeptide with saturated, unsaturated, methoxylated and branched fatty acids.
    Húmpola MV; Rey MC; Carballeira NM; Simonetta AC; Tonarelli GG
    J Pept Sci; 2017 Jan; 23(1):45-55. PubMed ID: 28025839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial resistance to antimicrobial peptides.
    Abdi M; Mirkalantari S; Amirmozafari N
    J Pept Sci; 2019 Nov; 25(11):e3210. PubMed ID: 31637796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AApeptides as a new class of antimicrobial agents.
    Niu Y; Wu H; Li Y; Hu Y; Padhee S; Li Q; Cao C; Cai J
    Org Biomol Chem; 2013 Jul; 11(26):4283-90. PubMed ID: 23722277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteriophages, phage endolysins and antimicrobial peptides - the possibilities for their common use to combat infections and in the design of new drugs.
    Mirski T; Lidia M; Nakonieczna A; Gryko R
    Ann Agric Environ Med; 2019 Jun; 26(2):203-209. PubMed ID: 31232046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A linguistic model for the rational design of antimicrobial peptides.
    Loose C; Jensen K; Rigoutsos I; Stephanopoulos G
    Nature; 2006 Oct; 443(7113):867-9. PubMed ID: 17051220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates.
    Faccone D; Veliz O; Corso A; Noguera M; Martínez M; Payes C; Semorile L; Maffía PC
    Eur J Med Chem; 2014 Jan; 71():31-5. PubMed ID: 24269514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha-helical cationic antimicrobial peptides: relationships of structure and function.
    Huang Y; Huang J; Chen Y
    Protein Cell; 2010 Feb; 1(2):143-52. PubMed ID: 21203984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era.
    Wang J; Dou X; Song J; Lyu Y; Zhu X; Xu L; Li W; Shan A
    Med Res Rev; 2019 May; 39(3):831-859. PubMed ID: 30353555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The expanding scope of antimicrobial peptide structures and their modes of action.
    Nguyen LT; Haney EF; Vogel HJ
    Trends Biotechnol; 2011 Sep; 29(9):464-72. PubMed ID: 21680034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian Antimicrobial Peptides: Promising Therapeutic Targets Against Infection and Chronic Inflammation.
    Dutta P; Das S
    Curr Top Med Chem; 2016; 16(1):99-129. PubMed ID: 26139111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two distinct amphipathic peptide antibiotics with systemic efficacy.
    Lakshmaiah Narayana J; Mishra B; Lushnikova T; Wu Q; Chhonker YS; Zhang Y; Zarena D; Salnikov ES; Dang X; Wang F; Murphy C; Foster KW; Gorantla S; Bechinger B; Murry DJ; Wang G
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19446-19454. PubMed ID: 32723829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.