BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 27966361)

  • 1. Identification of Short Hydrophobic Cell-Penetrating Peptides for Cytosolic Peptide Delivery by Rational Design.
    Schmidt S; Adjobo-Hermans MJ; Kohze R; Enderle T; Brock R; Milletti F
    Bioconjug Chem; 2017 Feb; 28(2):382-389. PubMed ID: 27966361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy.
    Mo RH; Zaro JL; Shen WC
    Mol Pharm; 2012 Feb; 9(2):299-309. PubMed ID: 22171592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CyLoP-1: a novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes.
    Jha D; Mishra R; Gottschalk S; Wiesmüller KH; Ugurbil K; Maier ME; Engelmann J
    Bioconjug Chem; 2011 Mar; 22(3):319-28. PubMed ID: 21319732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery.
    Di Pisa M; Chassaing G; Swiecicki JM
    J Pept Sci; 2015 May; 21(5):356-69. PubMed ID: 25787823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Hydrophobic Cell-Penetrating Stapled Peptides as Drug Carriers.
    Tsuchiya K; Horikoshi K; Fujita M; Hirano M; Miyamoto M; Yokoo H; Demizu Y
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier.
    Young Kim H; Young Yum S; Jang G; Ahn DR
    Sci Rep; 2015 Jun; 5():11719. PubMed ID: 26114640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of N-terminal and C-terminal modification on cytotoxicity and cellular uptake of amphiphilic cell penetrating peptides.
    Soleymani-Goloujeh M; Nokhodchi A; Niazi M; Najafi-Hajivar S; Shahbazi-Mojarrad J; Zarghami N; Zakeri-Milani P; Mohammadi A; Karimi M; Valizadeh H
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):91-103. PubMed ID: 29258339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cartilage penetrating cationic peptide carriers for applications in drug delivery to avascular negatively charged tissues.
    Vedadghavami A; Wagner EK; Mehta S; He T; Zhang C; Bajpayee AG
    Acta Biomater; 2019 Jul; 93():258-269. PubMed ID: 30529083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides.
    Dissanayake S; Denny WA; Gamage S; Sarojini V
    J Control Release; 2017 Mar; 250():62-76. PubMed ID: 28167286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How charge distribution influences the function of membrane-active peptides: Lytic or cell-penetrating?
    Chen L; Zhang Q; Yuan X; Cao Y; Yuan Y; Yin H; Ding X; Zhu Z; Luo SZ
    Int J Biochem Cell Biol; 2017 Feb; 83():71-75. PubMed ID: 28013149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct cytosolic delivery of cargoes in vivo by a chimera consisting of D- and L-arginine residues.
    Ma Y; Gong C; Ma Y; Fan F; Luo M; Yang F; Zhang YH
    J Control Release; 2012 Sep; 162(2):286-94. PubMed ID: 22824782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-penetrating peptides: design, synthesis, and applications.
    Copolovici DM; Langel K; Eriste E; Langel Ü
    ACS Nano; 2014 Mar; 8(3):1972-94. PubMed ID: 24559246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel cell-penetrating peptides based on α-aminoxy acids.
    Ma Y; Yang D; Ma Y; Zhang YH
    Chembiochem; 2012 Jan; 13(1):73-9. PubMed ID: 22162305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-penetrating properties of the transactivator of transcription and polyarginine (R9) peptides, their conjugative effect on nanoparticles and the prospect of conjugation with arsenic trioxide.
    Kanwar JR; Gibbons J; Verma AK; Kanwar RK
    Anticancer Drugs; 2012 Jun; 23(5):471-82. PubMed ID: 22241171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-penetrating peptides as a promising tool for delivery of various molecules into the cells.
    Ruczynski J; Wierzbicki PM; Kogut-Wierzbicka M; Mucha P; Siedlecka-Kroplewska K; Rekowski P
    Folia Histochem Cytobiol; 2014; 52(4):257-69. PubMed ID: 25530464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rational design of cell-penetrating peptides for application in delivery systems.
    Kang Z; Ding G; Meng Z; Meng Q
    Peptides; 2019 Nov; 121():170149. PubMed ID: 31491454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of amphipathic CPPs with model membranes.
    Deshayes S; Konate K; Aldrian G; Heitz F; Divita G
    Methods Mol Biol; 2011; 683():41-56. PubMed ID: 21053121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell entry of cell penetrating peptides: tales of tails wagging dogs.
    Jones AT; Sayers EJ
    J Control Release; 2012 Jul; 161(2):582-91. PubMed ID: 22516088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Cyclic, Cell Penetrating Peptide Compatible with In Vitro Selection Strategies.
    Abrigo NA; Dods KK; Makovsky CA; Lohan S; Mitra K; Newcomb KM; Le A; Hartman MCT
    ACS Chem Biol; 2023 Apr; 18(4):746-755. PubMed ID: 36920103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability.
    Kim S; Hyun S; Lee Y; Lee Y; Yu J
    Biomacromolecules; 2016 Sep; 17(9):3007-15. PubMed ID: 27442521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.