BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 27966361)

  • 41. OBP fused with cell-penetrating peptides promotes liposomal transduction.
    Gonçalves F; Castro TG; Nogueira E; Pires R; Silva C; Ribeiro A; Cavaco-Paulo A
    Colloids Surf B Biointerfaces; 2018 Jan; 161():645-653. PubMed ID: 29169119
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes.
    Guarnieri D; Melone P; Moglianetti M; Marotta R; Netti PA; Pompa PP
    Nanoscale; 2017 Aug; 9(31):11288-11296. PubMed ID: 28758654
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrocarbon staple constructing highly efficient α-helix cell-penetrating peptides for intracellular cargo delivery.
    Li S; Zhang X; Guo C; Peng Y; Liu X; Wang B; Zhuang R; Chang M; Wang R
    Chem Commun (Camb); 2020 Dec; 56(100):15655-15658. PubMed ID: 33355559
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insight into the role of physicochemical parameters in a novel series of amphipathic peptides for efficient DNA delivery.
    Sharma R; Shivpuri S; Anand A; Kulshreshtha A; Ganguli M
    Mol Pharm; 2013 Jul; 10(7):2588-600. PubMed ID: 23725377
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell membranes open "doors" for cationic nanoparticles/biomolecules: insights into uptake kinetics.
    Lin J; Alexander-Katz A
    ACS Nano; 2013 Dec; 7(12):10799-808. PubMed ID: 24251827
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides.
    Nakase I; Akita H; Kogure K; Gräslund A; Langel U; Harashima H; Futaki S
    Acc Chem Res; 2012 Jul; 45(7):1132-9. PubMed ID: 22208383
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cell penetrating peptides: a comparative transport analysis for 474 sequence motifs.
    Ramaker K; Henkel M; Krause T; Röckendorf N; Frey A
    Drug Deliv; 2018 Nov; 25(1):928-937. PubMed ID: 29656676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.
    Vasconcelos L; Lehto T; Madani F; Radoi V; Hällbrink M; Vukojević V; Langel Ü
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):491-504. PubMed ID: 28962904
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of cell-penetrating peptides for cargo delivery.
    Pooga M; Langel U
    Methods Mol Biol; 2005; 298():77-89. PubMed ID: 16044541
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Classes of Cell-Penetrating Peptides.
    Pooga M; Langel Ü
    Methods Mol Biol; 2015; 1324():3-28. PubMed ID: 26202259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Saturated Fatty Acid Analogues of Cell-Penetrating Peptide PepFect14: Role of Fatty Acid Modification in Complexation and Delivery of Splice-Correcting Oligonucleotides.
    Lehto T; Vasconcelos L; Margus H; Figueroa R; Pooga M; Hällbrink M; Langel Ü
    Bioconjug Chem; 2017 Mar; 28(3):782-792. PubMed ID: 28209057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. siRNA delivery using amphipathic cell-penetrating peptides into human hepatoma cells.
    Furukawa K; Tanaka M; Oba M
    Bioorg Med Chem; 2020 Apr; 28(8):115402. PubMed ID: 32146061
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cationic cell-penetrating peptides as vehicles for siRNA delivery.
    Beloor J; Zeller S; Choi CS; Lee SK; Kumar P
    Ther Deliv; 2015; 6(4):491-507. PubMed ID: 25996046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides.
    Mäger I; Langel K; Lehto T; Eiríksdóttir E; Langel U
    Biochim Biophys Acta; 2012 Mar; 1818(3):502-11. PubMed ID: 22155257
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of amphiphilic α-helical cell-penetrating peptides with heparan sulfate.
    Yang J; Tsutsumi H; Furuta T; Sakurai M; Mihara H
    Org Biomol Chem; 2014 Jul; 12(26):4673-81. PubMed ID: 24867193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.
    Upadhya A; Sangave PC
    J Pept Sci; 2016 Oct; 22(10):647-659. PubMed ID: 27723187
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity?
    Jobin ML; Alves ID
    Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents.
    Borrelli A; Tornesello AL; Tornesello ML; Buonaguro FM
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29385037
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploration of the design principles of a cell-penetrating bicylic peptide scaffold.
    Wallbrecher R; Depré L; Verdurmen WP; Bovée-Geurts PH; van Duinkerken RH; Zekveld MJ; Timmerman P; Brock R
    Bioconjug Chem; 2014 May; 25(5):955-64. PubMed ID: 24697151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides.
    Zakany F; Mándity IM; Varga Z; Panyi G; Nagy P; Kovacs T
    Cells; 2023 Jun; 12(13):. PubMed ID: 37443733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.