These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 27966548)

  • 21. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting.
    Lee DK; Lee D; Lumley MA; Choi KS
    Chem Soc Rev; 2019 Apr; 48(7):2126-2157. PubMed ID: 30499570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ru-P pair sites boost charge transport in hematite photoanodes for exceeding 1% efficient solar water splitting.
    Gao RT; Liu L; Li Y; Yang Y; He J; Liu X; Zhang X; Wang L; Wu L
    Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2300493120. PubMed ID: 37364112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical Insights into Band Bending in Pristine and Co-Pi-Modified BiVO
    Kandiel TA; Ahmed MG; Ahmed AY
    J Phys Chem Lett; 2020 Jul; 11(13):5015-5020. PubMed ID: 32543847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting.
    Pihosh Y; Turkevych I; Mawatari K; Asai T; Hisatomi T; Uemura J; Tosa M; Shimamura K; Kubota J; Domen K; Kitamori T
    Small; 2014 Sep; 10(18):3692-9. PubMed ID: 24863862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elaborately Modified BiVO
    Kim JH; Lee JS
    Adv Mater; 2019 May; 31(20):e1806938. PubMed ID: 30793384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting.
    Gurudayal ; Sabba D; Kumar MH; Wong LH; Barber J; Grätzel M; Mathews N
    Nano Lett; 2015 Jun; 15(6):3833-9. PubMed ID: 25942281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. General and Robust Photothermal-Heating-Enabled High-Efficiency Photoelectrochemical Water Splitting.
    He B; Jia S; Zhao M; Wang Y; Chen T; Zhao S; Li Z; Lin Z; Zhao Y; Liu X
    Adv Mater; 2021 Apr; 33(16):e2004406. PubMed ID: 33734506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The solution-phase process of a g-C
    Zhang B; Zhao SY; Wang HH; Zhao TJ; Liu YX; Lv LB; Wei X; Li XH; Chen JS
    Chem Commun (Camb); 2017 Sep; 53(76):10544-10547. PubMed ID: 28890982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production.
    Chen YS; Manser JS; Kamat PV
    J Am Chem Soc; 2015 Jan; 137(2):974-81. PubMed ID: 25543877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrafast fabrication of highly active BiVO
    Kim JH; Jo YH; Kim JH; Lee JS
    Nanoscale; 2016 Oct; 8(40):17623-17631. PubMed ID: 27714102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BiVO
    Baek JH; Kim BJ; Han GS; Hwang SW; Kim DR; Cho IS; Jung HS
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1479-1487. PubMed ID: 27989115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon-enhanced nanoporous BiVO4 photoanodes for efficient photoelectrochemical water oxidation.
    Gan J; Rajeeva BB; Wu Z; Penley D; Liang C; Tong Y; Zheng Y
    Nanotechnology; 2016 Jun; 27(23):235401. PubMed ID: 27119335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes.
    Sun K; McDowell MT; Nielander AC; Hu S; Shaner MR; Yang F; Brunschwig BS; Lewis NS
    J Phys Chem Lett; 2015 Feb; 6(4):592-8. PubMed ID: 26262472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environment-Benign Colloidal Quantum Dots-Modified Dual Photoelectrodes for Self-Biased Photoelectrochemical Water Splitting.
    Xia L; Li X; Yang Y; Tong X
    ChemSusChem; 2024 Aug; ():e202401298. PubMed ID: 39115637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of the Si/TiO2/BiVO4 heterojunction on the onset potential of photocurrents for solar water oxidation.
    Jung H; Chae SY; Shin C; Min BK; Joo OS; Hwang YJ
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5788-96. PubMed ID: 25720751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermoelectric-Photoelectrochemical Water Splitting under Concentrated Solar Irradiation.
    Pornrungroj C; Andrei V; Reisner E
    J Am Chem Soc; 2023 Jun; 145(25):13709-13714. PubMed ID: 37310357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting.
    Kang JS; Noh Y; Kim J; Choi H; Jeon TH; Ahn D; Kim JY; Yu SH; Park H; Yum JH; Choi W; Dunand DC; Choe H; Sung YE
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6583-6588. PubMed ID: 28471078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. General In Situ Photoactivation Route with IPCE over 80% toward CdS Photoanodes for Photoelectrochemical Applications.
    Wang Y; Chen X; Xiu H; Zhuang H; Li J; Zhou Y; Liu D; Kuang Y
    Small; 2021 Dec; 17(52):e2104307. PubMed ID: 34725925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating a Semitransparent, Fullerene-Free Organic Solar Cell in Tandem with a BiVO
    Peng Y; Govindaraju GV; Lee DK; Choi KS; Andrew TL
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22449-22455. PubMed ID: 28636350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bendable BiVO
    Lee J; Lee S; Seo S; Kim S; Lee J; Song J; Yang J; Jung Y; Lee JH; Ko RK; Choi H; Choi CH; Lee S
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16478-16484. PubMed ID: 33792301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.