These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27966699)

  • 1. Electronic structures and transport properties of a MoS
    Yang Z; Pan J; Liu Q; Wu N; Hu M; Ouyang F
    Phys Chem Chem Phys; 2017 Jan; 19(2):1303-1310. PubMed ID: 27966699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Electronic Structure of Armchair MoS
    Zhang L; Wan L; Yu Y; Wang B; Xu F; Wei Y; Zhao Y
    J Phys Chem C Nanomater Interfaces; 2015; 119(38):22164-22171. PubMed ID: 26331336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic properties and transistors of the NbS
    Liu Q; Ouyang F; Yang Z; Peng S; Zhou W; Zou H; Long M; Pan J
    Nanotechnology; 2017 Jan; 28(7):075702. PubMed ID: 28074784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structures and transport properties of SnS-SnSe nanoribbon lateral heterostructures.
    Yang Y; Zhou Y; Luo Z; Guo Y; Rao D; Yan X
    Phys Chem Chem Phys; 2019 May; 21(18):9296-9301. PubMed ID: 30964129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of electronic and optical properties of line defected armchair MoS
    Gholami Rudi S; Soleimani-Amiri S
    J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33752179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions.
    Chen YC; Cao T; Chen C; Pedramrazi Z; Haberer D; de Oteyza DG; Fischer FR; Louie SG; Crommie MF
    Nat Nanotechnol; 2015 Feb; 10(2):156-60. PubMed ID: 25581888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors.
    Singh P; Randhawa DKK; Tarun ; Choudhary BC; Walia GK; Kaur N
    J Mol Model; 2019 Dec; 26(1):4. PubMed ID: 31834483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifunctional NbS
    Wang B; Luo H; Wang X; Wang E; Sun Y; Tsai YC; Zhu H; Liu P; Jiang K; Liu K
    ACS Nano; 2020 Jan; 14(1):175-184. PubMed ID: 31789497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral Interfaces between Monolayer MoS
    Haastrup MJ; Mammen MHR; Rodríguez-Fernández J; Lauritsen JV
    ACS Nano; 2021 Apr; 15(4):6699-6708. PubMed ID: 33750101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation dependent thermal conductance in single-layer MoS2.
    Jiang JW; Zhuang X; Rabczuk T
    Sci Rep; 2013; 3():2209. PubMed ID: 23860436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons.
    Zhu L; Li R; Yao K
    Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric-Field Tunable Band Offsets in Black Phosphorus and MoS2 van der Waals p-n Heterostructure.
    Huang L; Huo N; Li Y; Chen H; Yang J; Wei Z; Li J; Li SS
    J Phys Chem Lett; 2015 Jul; 6(13):2483-8. PubMed ID: 26266723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional heterostructures constructed using MoS
    Zhou Y; Dong J; Li H
    Phys Chem Chem Phys; 2016 Oct; 18(39):27468-27475. PubMed ID: 27711593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanodots of transition metal dichalcogenides embedded in MoS
    Miwa RH; Scopel WL; Souza ES; Padilha JE; Fazzio A
    Phys Chem Chem Phys; 2017 Oct; 19(38):26240-26247. PubMed ID: 28932833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Properties of MoS2-WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy.
    Chen K; Wan X; Wen J; Xie W; Kang Z; Zeng X; Chen H; Xu JB
    ACS Nano; 2015 Oct; 9(10):9868-76. PubMed ID: 26373884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures.
    Wei W; Dai Y; Huang B
    Phys Chem Chem Phys; 2016 Jun; 18(23):15632-8. PubMed ID: 27220413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Field-Effect Transistors Based on αP and βP.
    Montes E; Schwingenschlögl U
    Adv Mater; 2019 May; 31(18):e1807810. PubMed ID: 30907472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.