These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 27966898)
41. An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition. Yu M; Wang A; Wang Y; Li C; Shi G Nanoscale; 2014 Oct; 6(19):11419-24. PubMed ID: 25148141 [TBL] [Abstract][Full Text] [Related]
42. MoS Chen H; He J; Ke G; Sun L; Chen J; Li Y; Ren X; Deng L; Zhang P Nanoscale; 2019 Sep; 11(35):16253-16261. PubMed ID: 31454008 [TBL] [Abstract][Full Text] [Related]
43. Preparation of ZnO Nanorods/Graphene Composite Anodes for High-Performance Lithium-Ion Batteries. Zhang J; Tan T; Zhao Y; Liu N Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30477119 [TBL] [Abstract][Full Text] [Related]
44. Graphene Aerogels with Anchored Sub-Micrometer Mulberry-Like ZnO Particles for High-Rate and Long-Cycle Anode Materials in Lithium Ion Batteries. Fan L; Zhang Y; Zhang Q; Wu X; Cheng J; Zhang N; Feng Y; Sun K Small; 2016 Oct; 12(37):5208-5216. PubMed ID: 27515914 [TBL] [Abstract][Full Text] [Related]
45. Constructing Heterointerface of Metal Atomic Layer and Amorphous Anode Material for High-Capacity and Fast Lithium Storage. He T; Feng J; Ru J; Feng Y; Lian R; Yang J ACS Nano; 2019 Jan; 13(1):830-838. PubMed ID: 30525451 [TBL] [Abstract][Full Text] [Related]
46. Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries. Ge H; Hao T; Osgood H; Zhang B; Chen L; Cui L; Song XM; Ogoke O; Wu G ACS Appl Mater Interfaces; 2016 Apr; 8(14):9162-9. PubMed ID: 27015357 [TBL] [Abstract][Full Text] [Related]
47. Polyoxometalate-Based Bottom-Up Fabrication of Graphene Quantum Dot/Manganese Vanadate Composites as Lithium Ion Battery Anodes. Ji Y; Hu J; Biskupek J; Kaiser U; Song YF; Streb C Chemistry; 2017 Nov; 23(65):16637-16643. PubMed ID: 28980735 [TBL] [Abstract][Full Text] [Related]
48. Ultrathin Zn2(OH)3VO3 Nanosheets: First Synthesis, Excellent Lithium-Storage Properties, and Investigation of Electrochemical Mechanism. Yang G; Wu M; Wang C ACS Appl Mater Interfaces; 2016 Sep; 8(36):23746-54. PubMed ID: 27560959 [TBL] [Abstract][Full Text] [Related]
49. Well-ordered mesoporous Fe Li M; Ma C; Zhu QC; Xu SM; Wei X; Wu YM; Tang WP; Wang KX; Chen JS Dalton Trans; 2017 Apr; 46(15):5025-5032. PubMed ID: 28350408 [TBL] [Abstract][Full Text] [Related]
50. Three-Dimensional Carbon Framework Anchored Polyoxometalate as a High-Performance Anode for Lithium-Ion Batteries. Jia X; Wang J; Hu H; Song YF Chemistry; 2020 Apr; 26(23):5257-5263. PubMed ID: 31971640 [TBL] [Abstract][Full Text] [Related]
51. Metal-organic framework derived amorphous VO Cong B; Hu Y; Sun S; Wang Y; Wang B; Kong H; Chen G Nanoscale; 2020 Aug; 12(32):16901-16909. PubMed ID: 32766631 [TBL] [Abstract][Full Text] [Related]
52. Unusual Improvement of Pseudocapacitance of Nanocomposite Electrodes: Three-Dimensional Amorphous Carbon Frameworks Triggered by TiO Lu H; Yang C; Bao H; Wang L; Li C; Wang H ACS Appl Mater Interfaces; 2019 Dec; 11(51):48039-48053. PubMed ID: 31791127 [TBL] [Abstract][Full Text] [Related]
53. MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries. Li X; Xiong S; Li J; Liang X; Wang J; Bai J; Qian Y Chemistry; 2013 Aug; 19(34):11310-9. PubMed ID: 23843271 [TBL] [Abstract][Full Text] [Related]
54. Flexible and free-standing ternary Cd₂GeO₄ nanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance. Wang L; Zhang X; Shen G; Peng X; Zhang M; Xu J Nanotechnology; 2016 Mar; 27(9):095602. PubMed ID: 26822529 [TBL] [Abstract][Full Text] [Related]
55. Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes. Liu H; Li W; Shen D; Zhao D; Wang G J Am Chem Soc; 2015 Oct; 137(40):13161-6. PubMed ID: 26414170 [TBL] [Abstract][Full Text] [Related]
56. Scalable Synthesis of Few-Layer MoS2 Incorporated into Hierarchical Porous Carbon Nanosheets for High-Performance Li- and Na-Ion Battery Anodes. Park SK; Lee J; Bong S; Jang B; Seong KD; Piao Y ACS Appl Mater Interfaces; 2016 Aug; 8(30):19456-65. PubMed ID: 27406553 [TBL] [Abstract][Full Text] [Related]
57. Green Synthesis of Dual Carbon Conductive Network-Encapsulated Hollow SiO Xu T; Wang Q; Zhang J; Xie X; Xia B ACS Appl Mater Interfaces; 2019 Jun; 11(22):19959-19967. PubMed ID: 31090391 [TBL] [Abstract][Full Text] [Related]
58. Interconnected Nanoflake Network Derived from a Natural Resource for High-Performance Lithium-Ion Batteries. Cheng F; Li WC; Lu AH ACS Appl Mater Interfaces; 2016 Oct; 8(41):27843-27849. PubMed ID: 27684326 [TBL] [Abstract][Full Text] [Related]
59. Sb Nanoparticles Anchored on Nitrogen-Doped Amorphous Carbon-Coated Ultrathin CoS Jin R; Jiang H; Wang Q; Li G; Gao S ACS Appl Mater Interfaces; 2017 Dec; 9(51):44494-44502. PubMed ID: 29220169 [TBL] [Abstract][Full Text] [Related]
60. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery. Ge X; Li Z; Wang C; Yin L ACS Appl Mater Interfaces; 2015 Dec; 7(48):26633-42. PubMed ID: 26572922 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]