These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Yang J; Zhang YS; Yue K; Khademhosseini A Acta Biomater; 2017 Jul; 57():1-25. PubMed ID: 28088667 [TBL] [Abstract][Full Text] [Related]
4. Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting. You F; Chen X; Cooper DML; Chang T; Eames BF Biofabrication; 2018 Dec; 11(1):015015. PubMed ID: 30524110 [TBL] [Abstract][Full Text] [Related]
5. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737 [TBL] [Abstract][Full Text] [Related]
6. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Park JY; Choi JC; Shim JH; Lee JS; Park H; Kim SW; Doh J; Cho DW Biofabrication; 2014 Sep; 6(3):035004. PubMed ID: 24758832 [TBL] [Abstract][Full Text] [Related]
7. 3D bioprinted hydrogel model incorporating β-tricalcium phosphate for calcified cartilage tissue engineering. Kosik-Kozioł A; Costantini M; Mróz A; Idaszek J; Heljak M; Jaroszewicz J; Kijeńska E; Szöke K; Frerker N; Barbetta A; Brinchmann JE; Święszkowski W Biofabrication; 2019 May; 11(3):035016. PubMed ID: 30943457 [TBL] [Abstract][Full Text] [Related]
8. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
9. Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces. Diloksumpan P; de Ruijter M; Castilho M; Gbureck U; Vermonden T; van Weeren PR; Malda J; Levato R Biofabrication; 2020 Feb; 12(2):025014. PubMed ID: 31918421 [TBL] [Abstract][Full Text] [Related]
10. A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides. Abbadessa A; Mouser VHM; Blokzijl MM; Gawlitta D; Dhert WJA; Hennink WE; Malda J; Vermonden T Biomacromolecules; 2016 Jun; 17(6):2137-2147. PubMed ID: 27171342 [TBL] [Abstract][Full Text] [Related]
11. Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation. Oliveira JT; Santos TC; Martins L; Picciochi R; Marques AP; Castro AG; Neves NM; Mano JF; Reis RL Tissue Eng Part A; 2010 Jan; 16(1):343-53. PubMed ID: 19702512 [TBL] [Abstract][Full Text] [Related]
12. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering. Izadifar Z; Chang T; Kulyk W; Chen X; Eames BF Tissue Eng Part C Methods; 2016 Mar; 22(3):173-88. PubMed ID: 26592915 [TBL] [Abstract][Full Text] [Related]
13. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions. Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612 [TBL] [Abstract][Full Text] [Related]
14. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856 [TBL] [Abstract][Full Text] [Related]
15. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274 [TBL] [Abstract][Full Text] [Related]
16. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. You F; Eames BF; Chen X Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28737701 [TBL] [Abstract][Full Text] [Related]
17. Bioprinted Scaffolds for Cartilage Tissue Engineering. Kang HW; Yoo JJ; Atala A Methods Mol Biol; 2015; 1340():161-9. PubMed ID: 26445837 [TBL] [Abstract][Full Text] [Related]
19. Photoresponsive Polysaccharide-Based Hydrogels with Tunable Mechanical Properties for Cartilage Tissue Engineering. Giammanco GE; Carrion B; Coleman RM; Ostrowski AD ACS Appl Mater Interfaces; 2016 Jun; 8(23):14423-9. PubMed ID: 27223251 [TBL] [Abstract][Full Text] [Related]
20. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Gao G; Schilling AF; Hubbell K; Yonezawa T; Truong D; Hong Y; Dai G; Cui X Biotechnol Lett; 2015 Nov; 37(11):2349-55. PubMed ID: 26198849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]