These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27966969)

  • 1. Method for Accessing Nitrogen-Containing, B-Heteroaryl-Substituted 2,1-Borazaronaphthalenes.
    Davies GH; Zhou ZZ; Jouffroy M; Molander GA
    J Org Chem; 2017 Jan; 82(1):549-555. PubMed ID: 27966969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accessing molecularly complex azaborines: palladium-catalyzed Suzuki-Miyaura cross-couplings of brominated 2,1-borazaronaphthalenes and potassium organotrifluoroborates.
    Molander GA; Wisniewski SR
    J Org Chem; 2014 Jul; 79(14):6663-78. PubMed ID: 24984003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A convergent, modular approach to functionalized 2,1-borazaronaphthalenes from 2-aminostyrenes and potassium organotrifluoroborates.
    Wisniewski SR; Guenther CL; Argintaru OA; Molander GA
    J Org Chem; 2014 Jan; 79(1):365-78. PubMed ID: 24328074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Efficient Nucleophilic Azaborine Building Blocks for the Synthesis of B-N Naphthyl (Hetero)arylmethane Isosteres.
    Amani J; Molander GA
    Org Lett; 2015 Jul; 17(14):3624-7. PubMed ID: 26146880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regioselective Diversification of 2,1-Borazaronaphthalenes: Unlocking Isosteric Space via C-H Activation.
    Davies GHM; Jouffroy M; Sherafat F; Saeednia B; Howshall C; Molander GA
    J Org Chem; 2017 Aug; 82(15):8072-8084. PubMed ID: 28714683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoredox Catalysis Enables Access to N-Functionalized 2,1-Borazaronaphthalenes.
    Wang X; Davies GHM; Koschitzky A; Wisniewski SR; Kelly CB; Molander GA
    Org Lett; 2019 Apr; 21(8):2880-2884. PubMed ID: 30916973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negishi Cross-Coupling Is Compatible with a Reactive B-Cl Bond: Development of a Versatile Late-Stage Functionalization of 1,2-Azaborines and Its Application to the Synthesis of New BN Isosteres of Naphthalene and Indenyl.
    Brown AN; Li B; Liu SY
    J Am Chem Soc; 2015 Jul; 137(28):8932-5. PubMed ID: 26148959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive cross-coupling of 3-bromo-2,1-borazaronaphthalenes with alkyl iodides.
    Molander GA; Wisniewski SR; Traister KM
    Org Lett; 2014 Jul; 16(14):3692-5. PubMed ID: 24977641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accessing an azaborine building block: synthesis and substitution reactions of 2-chloromethyl-2,1-borazaronaphthalene.
    Molander GA; Wisniewski SR; Amani J
    Org Lett; 2014 Nov; 16(21):5636-9. PubMed ID: 25317850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accessing 2,1-borazaronaphthols: self-arylation of 1-alkyl-2-aryl-3-bromo-2,1-borazaronaphthalenes.
    Molander GA; Wisniewski SR
    J Org Chem; 2014 Sep; 79(17):8339-47. PubMed ID: 25133658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of phthalazines and pyridazino-aromatics: a novel strategy for substituted naphthalenes.
    Kessler SN; Wegner HA
    Org Lett; 2012 Jul; 14(13):3268-71. PubMed ID: 22686471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new, efficient and stereoselective synthesis of tricyclic and tetracyclic compounds by samarium diiodide induced cyclisations of naphthyl-substituted arylketones--an easy access to steroid-like skeletons.
    Aulenta F; Berndt M; Brüdgam I; Hartl H; Sörgel S; Reissig HU
    Chemistry; 2007; 13(21):6047-62. PubMed ID: 17487910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient Friedel-Crafts/oxa-Michael/aromatic annulation: rapid access to substituted naphtho[2,1-b]furan, naphtho[1,2-b]furan, and benzofuran derivatives.
    Anwar S; Huang WY; Chen CH; Cheng YS; Chen K
    Chemistry; 2013 Mar; 19(13):4344-51. PubMed ID: 23386481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of substituted naphthalenes via a catalytic ring-expansion rearrangement.
    Glass AC; Morris BB; Zakharov LN; Liu SY
    Org Lett; 2008 Nov; 10(21):4855-7. PubMed ID: 18834135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold(I)-catalyzed regioselective inter-/intramolecular addition cascade of di- and triynes for direct construction of substituted naphthalenes.
    Naoe S; Suzuki Y; Hirano K; Inaba Y; Oishi S; Fujii N; Ohno H
    J Org Chem; 2012 Jun; 77(11):4907-16. PubMed ID: 22568806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CuCN-mediated cascade cyclization of 4-(2-bromophenyl)-2-butenoates: a high-yield synthesis of substituted naphthalene amino esters.
    Reddy RS; Prasad PK; Ahuja BB; Sudalai A
    J Org Chem; 2013 May; 78(10):5045-50. PubMed ID: 23593994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pushing the limits of steric demand around a biaryl axis: synthesis of tetra-ortho-substituted biaryl naphthalenes.
    Glass AC; Klonoski S; Zakharov LN; Liu SY
    Chem Commun (Camb); 2011 Jan; 47(1):286-8. PubMed ID: 20730229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational synthesis of AB-type N-substituted core-functionalized naphthalene diimides (cNDIs).
    Berezin AA; Sciutto A; Demitri N; Bonifazi D
    Org Lett; 2015 Apr; 17(8):1870-3. PubMed ID: 25822286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic studies of Hoveyda-Grubbs metathesis catalysts bearing S-, Br-, I-, and N-coordinating naphthalene ligands.
    Grudzień K; Żukowska K; Malińska M; Woźniak K; Barbasiewicz M
    Chemistry; 2014 Mar; 20(10):2819-28. PubMed ID: 24519817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclization reaction for the synthesis of polysubstituted naphthalenes in the presence of Au(I) precatalysts.
    Jagdale AR; Park JH; Youn SW
    J Org Chem; 2011 Sep; 76(17):7204-15. PubMed ID: 21780754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.