These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27967007)

  • 1. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines.
    Yamamoto S; Ito S; Shiraishi N; Sagawa T
    Phys Rev E; 2016 Nov; 94(5-1):052121. PubMed ID: 27967007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine.
    Izumida Y
    Phys Rev E; 2020 Jul; 102(1-1):012142. PubMed ID: 32795077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic bounds and general properties of optimal efficiency and power in linear responses.
    Jiang JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042126. PubMed ID: 25375457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic thermodynamics of periodically driven systems: Fluctuation theorem for currents and unification of two classes.
    Ray S; Barato AC
    Phys Rev E; 2017 Nov; 96(5-1):052120. PubMed ID: 29347722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Onsager symmetries in adiabatically driven linear irreversible heat engines.
    Izumida Y
    Phys Rev E; 2021 May; 103(5):L050101. PubMed ID: 34134349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles.
    Frim AG; DeWeese MR
    Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Test of the Onsager Relations in a Driven System.
    Wang X; Dobnikar J; Frenkel D
    Phys Rev Lett; 2022 Dec; 129(23):238002. PubMed ID: 36563229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximum efficiency of steady-state heat engines at arbitrary power.
    Ryabov A; Holubec V
    Phys Rev E; 2016 May; 93(5):050101. PubMed ID: 27300810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power-Efficiency-Dissipation Relations in Linear Thermodynamics.
    Proesmans K; Cleuren B; Van den Broeck C
    Phys Rev Lett; 2016 Jun; 116(22):220601. PubMed ID: 27314707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear dissipation and nonequilibrium gas flows.
    Wu D; Wang D; Xiao H
    Phys Rev E; 2019 Sep; 100(3-1):032101. PubMed ID: 31639908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. True nature of the Curzon-Ahlborn efficiency.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E; 2017 Aug; 96(2-1):022119. PubMed ID: 28950453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry.
    Zhang R; Li QW; Tang FR; Yang XQ; Bai L
    Phys Rev E; 2017 Aug; 96(2-1):022133. PubMed ID: 28950616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irreversible dynamics, Onsager-Casimir symmetry, and an application to turbulence.
    Ottinger HC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042121. PubMed ID: 25375452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output.
    Guo J; Wang J; Wang Y; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012133. PubMed ID: 23410309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic Geometry of Microscopic Heat Engines.
    Brandner K; Saito K
    Phys Rev Lett; 2020 Jan; 124(4):040602. PubMed ID: 32058746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of linear nonequilibrium thermodynamics in the study of renal physiology.
    Essig A; Caplan SR
    Am J Physiol; 1979 Mar; 236(3):F211-9. PubMed ID: 371416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium.
    Parmeggiani A; Jülicher F; Ajdari A; Prost J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2127-40. PubMed ID: 11970005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium thermodynamics. II. Application to inhomogeneous systems.
    Gujrati PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041128. PubMed ID: 22680440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.