These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 27967010)
1. Thermal conductance of one-dimensional materials calculated with typical lattice models. Zhang C; Kang W; Wang J Phys Rev E; 2016 Nov; 94(5-1):052131. PubMed ID: 27967010 [TBL] [Abstract][Full Text] [Related]
2. The reservoir area dependent thermal transport at the nanoscale interface. Liu C; Fu Q; Gu Z; Lu P Phys Chem Chem Phys; 2020 Oct; 22(38):22016-22022. PubMed ID: 32975247 [TBL] [Abstract][Full Text] [Related]
3. Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices. Wang L; Hu B; Li B Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):040101. PubMed ID: 23214513 [TBL] [Abstract][Full Text] [Related]
4. Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces. Liang Z; Evans W; Keblinski P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022119. PubMed ID: 23496472 [TBL] [Abstract][Full Text] [Related]
5. Variational calculation of transport coefficients in diffusive lattice gases. Arita C; Krapivsky PL; Mallick K Phys Rev E; 2017 Mar; 95(3-1):032121. PubMed ID: 28415170 [TBL] [Abstract][Full Text] [Related]
6. Thermal transport in dimerized harmonic lattices: Exact solution, crossover behavior, and extended reservoirs. Chien CC; Kouachi S; Velizhanin KA; Dubi Y; Zwolak M Phys Rev E; 2017 Jan; 95(1-1):012137. PubMed ID: 28208409 [TBL] [Abstract][Full Text] [Related]
7. Heat-current correlation loss induced by finite-size effects in a one-dimensional nonlinear lattice. Wang L; Xu L; Zhao H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012110. PubMed ID: 25679573 [TBL] [Abstract][Full Text] [Related]
8. Green function, quasi-classical Langevin and Kubo-Greenwood methods in quantum thermal transport. Sevinçli H; Roche S; Cuniberti G; Brandbyge M; Gutierrez R; Medrano Sandonas L J Phys Condens Matter; 2019 Jul; 31(27):273003. PubMed ID: 31026228 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of heat current formulations for equilibrium molecular dynamics calculations of thermal conductivity. Guajardo-Cuéllar A; Go DB; Sen M J Chem Phys; 2010 Mar; 132(10):104111. PubMed ID: 20232951 [TBL] [Abstract][Full Text] [Related]
10. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency. Hoogeboom-Pot KM; Hernandez-Charpak JN; Gu X; Frazer TD; Anderson EH; Chao W; Falcone RW; Yang R; Murnane MM; Kapteyn HC; Nardi D Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4846-51. PubMed ID: 25831491 [TBL] [Abstract][Full Text] [Related]
11. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides. Galamba N; Nieto de Castro CA; Ely JF J Chem Phys; 2007 May; 126(20):204511. PubMed ID: 17552782 [TBL] [Abstract][Full Text] [Related]
12. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering. Neogi S; Reparaz JS; Pereira LF; Graczykowski B; Wagner MR; Sledzinska M; Shchepetov A; Prunnila M; Ahopelto J; Sotomayor-Torres CM; Donadio D ACS Nano; 2015 Apr; 9(4):3820-8. PubMed ID: 25827287 [TBL] [Abstract][Full Text] [Related]
13. Crossover behavior of the thermal conductance and Kramers' transition rate theory. Velizhanin KA; Sahu S; Chien CC; Dubi Y; Zwolak M Sci Rep; 2015 Dec; 5():17506. PubMed ID: 26634333 [TBL] [Abstract][Full Text] [Related]
14. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces. Lombard J; Detcheverry F; Merabia S J Phys Condens Matter; 2015 Jan; 27(1):015007. PubMed ID: 25425559 [TBL] [Abstract][Full Text] [Related]
15. Shear deformation-induced anisotropic thermal conductivity of graphene. Cui L; Shi S; Wei G; Du X Phys Chem Chem Phys; 2018 Jan; 20(2):951-957. PubMed ID: 29231938 [TBL] [Abstract][Full Text] [Related]
16. Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations. Liu G; Wang H; Gao Y; Zhou J; Wang H Phys Chem Chem Phys; 2017 Jan; 19(4):2843-2849. PubMed ID: 28067931 [TBL] [Abstract][Full Text] [Related]
17. Method to manage integration error in the Green-Kubo method. Oliveira LS; Greaney PA Phys Rev E; 2017 Feb; 95(2-1):023308. PubMed ID: 28297994 [TBL] [Abstract][Full Text] [Related]
18. Anisotropic thermal transport in Weyl semimetal TaAs: a first principles calculation. Ouyang T; Xiao H; Tang C; Hu M; Zhong J Phys Chem Chem Phys; 2016 Jun; 18(25):16709-14. PubMed ID: 27271203 [TBL] [Abstract][Full Text] [Related]
19. Validity of Fourier's law in one-dimensional momentum-conserving lattices with asymmetric interparticle interactions. Wang L; Hu B; Li B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052112. PubMed ID: 24329219 [TBL] [Abstract][Full Text] [Related]