These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27967066)

  • 1. Numerical investigation of initial condition effects on Rayleigh-Taylor instability with acceleration reversals.
    Aslangil D; Banerjee A; Lawrie AG
    Phys Rev E; 2016 Nov; 94(5-1):053114. PubMed ID: 27967066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of variable deceleration periods on Rayleigh-Taylor instability with acceleration reversals.
    Aslangil D; Lawrie AGW; Banerjee A
    Phys Rev E; 2022 Jun; 105(6-2):065103. PubMed ID: 35854494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rayleigh-Taylor instability with complex acceleration history.
    Dimonte G; Ramaprabhu P; Andrews M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046313. PubMed ID: 17995112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear analysis of incompressible Rayleigh-Taylor instability in solids.
    Piriz AR; Cela JJ; Tahir NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046305. PubMed ID: 19905434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations.
    Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG
    Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer in the Richtmyer-Meshkov instability.
    Thornber B; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056302. PubMed ID: 23214871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressibility effects in Rayleigh-Taylor instability-induced flows.
    Gauthier S; Le Creurer B
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration.
    Piriz AR; Sun YB; Tahir NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033007. PubMed ID: 25871202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions.
    Rigon G; Albertazzi B; Mabey P; Michel T; Falize E; Bouffetier V; Ceurvorst L; Masse L; Koenig M; Casner A
    Phys Rev E; 2021 Oct; 104(4-2):045213. PubMed ID: 34781551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability.
    Livescu D
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incompressible Rayleigh-Taylor mixing in circular and spherical geometries.
    Boffetta G; Musacchio S
    Phys Rev E; 2022 Feb; 105(2-2):025104. PubMed ID: 35291134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach.
    Poujade O; Peybernes M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The density ratio dependence of self-similar Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rayleigh-Taylor-instability experiments with elastic-plastic materials.
    Polavarapu R; Roach P; Banerjee A
    Phys Rev E; 2019 May; 99(5-1):053104. PubMed ID: 31212421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetically Induced Rotating Rayleigh-Taylor Instability.
    Scase MM; Baldwin KA; Hill RJ
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28287561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-eddy simulation and Reynolds-averaged Navier-Stokes modeling of three Rayleigh-Taylor mixing configurations with gravity reversal.
    Morgan BE
    Phys Rev E; 2022 Aug; 106(2-2):025101. PubMed ID: 36109949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underlying mechanism of numerical instability in large-eddy simulation of turbulent flows.
    Ida M; Taniguchi N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046701. PubMed ID: 15169125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2009 Jul; 367(1899):2971-83. PubMed ID: 19531516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acceleration and turbulence in Rayleigh-Taylor mixing.
    Sreenivasan KR; Abarzhi SI
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130267. PubMed ID: 24146015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.