These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27967078)

  • 1. Universality and dependence on initial conditions in the class of the nonlinear molecular beam epitaxy equation.
    Carrasco IS; Oliveira TJ
    Phys Rev E; 2016 Nov; 94(5-1):050801. PubMed ID: 27967078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal fluctuations in Kardar-Parisi-Zhang growth on one-dimensional flat substrates.
    Oliveira TJ; Ferreira SC; Alves SG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010601. PubMed ID: 22400503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometry dependence in linear interface growth.
    Carrasco ISS; Oliveira TJ
    Phys Rev E; 2019 Oct; 100(4-1):042107. PubMed ID: 31770866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kardar-Parisi-Zhang growth on square domains that enlarge nonlinearly in time.
    Carrasco ISS; Oliveira TJ
    Phys Rev E; 2022 May; 105(5-1):054804. PubMed ID: 35706246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-point height fluctuations and two-point correlators of (2+1) cylindrical KPZ systems.
    Carrasco ISS; Oliveira TJ
    Phys Rev E; 2023 Jun; 107(6-1):064140. PubMed ID: 37464689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kardar-Parisi-Zhang universality class in (2+1) dimensions: universal geometry-dependent distributions and finite-time corrections.
    Oliveira TJ; Alves SG; Ferreira SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):040102. PubMed ID: 23679356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions.
    Gueudré T; Le Doussal P; Rosso A; Henry A; Calabrese P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041151. PubMed ID: 23214573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: Limit distributions.
    Roy D; Pandit R
    Phys Rev E; 2020 Mar; 101(3-1):030103. PubMed ID: 32289936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial perturbation matters: Implications of geometry-dependent universal Kardar-Parisi-Zhang statistics for spatiotemporal chaos.
    Fukai YT; Takeuchi KA
    Chaos; 2021 Nov; 31(11):111103. PubMed ID: 34881614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoring the Fluctuation-Dissipation Theorem in Kardar-Parisi-Zhang Universality Class through a New Emergent Fractal Dimension.
    Gomes-Filho MS; de Castro P; Liarte DB; Oliveira FA
    Entropy (Basel); 2024 Mar; 26(3):. PubMed ID: 38539771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong Coupling in Conserved Surface Roughening: A New Universality Class?
    Caballero F; Nardini C; van Wijland F; Cates ME
    Phys Rev Lett; 2018 Jul; 121(2):020601. PubMed ID: 30085701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kardar-Parisi-Zhang Interfaces with Curved Initial Shapes and Variational Formula.
    Fukai YT; Takeuchi KA
    Phys Rev Lett; 2020 Feb; 124(6):060601. PubMed ID: 32109110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.
    Halpin-Healy T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042118. PubMed ID: 24229127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins of scaling corrections in ballistic growth models.
    Alves SG; Oliveira TJ; Ferreira SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052405. PubMed ID: 25493801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circular Kardar-Parisi-Zhang interfaces evolving out of the plane.
    Carrasco ISS; Oliveira TJ
    Phys Rev E; 2019 Mar; 99(3-1):032140. PubMed ID: 30999413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class.
    Gomes WP; Penna ALA; Oliveira FA
    Phys Rev E; 2019 Aug; 100(2-1):020101. PubMed ID: 31574642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-KPZ fluctuations in the derivative of the Kardar-Parisi-Zhang equation or noisy Burgers equation.
    Rodríguez-Fernández E; Cuerno R
    Phys Rev E; 2020 May; 101(5-1):052126. PubMed ID: 32575191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kardar-Parisi-Zhang universality in a one-dimensional polariton condensate.
    Fontaine Q; Squizzato D; Baboux F; Amelio I; Lemaître A; Morassi M; Sagnes I; Le Gratiet L; Harouri A; Wouters M; Carusotto I; Amo A; Richard M; Minguzzi A; Canet L; Ravets S; Bloch J
    Nature; 2022 Aug; 608(7924):687-691. PubMed ID: 36002483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal detrended fluctuation analysis as a tool for the determination of the roughness exponent of the mounded surfaces.
    Luis EEM; de Assis TA; Ferreira SC
    Phys Rev E; 2017 Apr; 95(4-1):042801. PubMed ID: 28505814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial pseudo-steady state & asymptotic KPZ universality in semiconductor on polymer deposition.
    Almeida RAL; Ferreira SO; Ferraz I; Oliveira TJ
    Sci Rep; 2017 Jun; 7(1):3773. PubMed ID: 28630488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.