These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27967103)

  • 1. Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power.
    Long R; Liu W
    Phys Rev E; 2016 Nov; 94(5-1):052114. PubMed ID: 27967103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency Bounds for Minimally Nonlinear Irreversible Heat Engines with Broken Time-Reversal Symmetry.
    Liu Q; Li W; Zhang M; He J; Wang J
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency at maximum power of thermochemical engines with near-independent particles.
    Luo X; Liu N; Qiu T
    Phys Rev E; 2016 Mar; 93(3):032125. PubMed ID: 27078310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General relations between the power, efficiency, and dissipation for the irreversible heat engines in the nonlinear response regime.
    Iyyappan I; Ponmurugan M
    Phys Rev E; 2018 Jan; 97(1-1):012141. PubMed ID: 29448419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031116. PubMed ID: 22587047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency at maximum power output of quantum heat engines under finite-time operation.
    Wang J; He J; Wu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output.
    Guo J; Wang J; Wang Y; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012133. PubMed ID: 23410309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency at and near maximum power of low-dissipation heat engines.
    Holubec V; Ryabov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum efficiency of steady-state heat engines at arbitrary power.
    Ryabov A; Holubec V
    Phys Rev E; 2016 May; 93(5):050101. PubMed ID: 27300810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance optimization of minimally nonlinear irreversible heat engines and refrigerators under a trade-off figure of merit.
    Long R; Liu Z; Liu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062119. PubMed ID: 25019737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source.
    Izumida Y; Okuda K
    Phys Rev Lett; 2014 May; 112(18):180603. PubMed ID: 24856684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unified trade-off optimization for general heat devices with nonisothermal processes.
    Long R; Liu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042127. PubMed ID: 25974458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
    Yan H; Guo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011146. PubMed ID: 22400551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximum efficiency of absorption refrigerators at arbitrary cooling power.
    Ye Z; Holubec V
    Phys Rev E; 2021 May; 103(5-1):052125. PubMed ID: 34134287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency at maximum power of low-dissipation Carnot engines.
    Esposito M; Kawai R; Lindenberg K; Van den Broeck C
    Phys Rev Lett; 2010 Oct; 105(15):150603. PubMed ID: 21230882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverging, but negligible power at Carnot efficiency: Theory and experiment.
    Holubec V; Ryabov A
    Phys Rev E; 2017 Dec; 96(6-1):062107. PubMed ID: 29347419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal performance of periodically driven, stochastic heat engines under limited control.
    Bauer M; Brandner K; Seifert U
    Phys Rev E; 2016 Apr; 93():042112. PubMed ID: 27176259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.