These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27967103)

  • 21. Three-level laser heat engine at optimal performance with ecological function.
    Singh V; Johal RS
    Phys Rev E; 2019 Jul; 100(1-1):012138. PubMed ID: 31499856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H
    Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.
    Wu F; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.
    Park JM; Chun HM; Noh JD
    Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maximum efficiency of low-dissipation refrigerators at arbitrary cooling power.
    Holubec V; Ye Z
    Phys Rev E; 2020 May; 101(5-1):052124. PubMed ID: 32575339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Most efficient quantum thermoelectric at finite power output.
    Whitney RS
    Phys Rev Lett; 2014 Apr; 112(13):130601. PubMed ID: 24745399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Achieving Carnot efficiency in a finite-power Brownian Carnot cycle with arbitrary temperature difference.
    Miura K; Izumida Y; Okuda K
    Phys Rev E; 2022 Mar; 105(3-1):034102. PubMed ID: 35428092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficiency at maximum power of thermally coupled heat engines.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041144. PubMed ID: 22680454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE; Xu D; Cao J
    Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms.
    Ye Z; Hu Y; He J; Wang J
    Sci Rep; 2017 Jul; 7(1):6289. PubMed ID: 28740216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental test of power-efficiency trade-off in a finite-time Carnot cycle.
    Zhai RX; Cui FM; Ma YH; Sun CP; Dong H
    Phys Rev E; 2023 Apr; 107(4):L042101. PubMed ID: 37198805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maximum efficiency of low-dissipation heat pumps at given heating load.
    Ye Z; Holubec V
    Phys Rev E; 2022 Feb; 105(2-1):024139. PubMed ID: 35291093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficiency at Maximum Power of Irreversible Engines with Asymmetric Nonlinear Flux-Force Relations.
    Koning J; Indekeu JO
    J Phys Chem B; 2018 Apr; 122(13):3615-3619. PubMed ID: 29425035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization criteria, bounds, and efficiencies of heat engines.
    Sánchez-Salas N; López-Palacios L; Velasco S; Calvo Hernández A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051101. PubMed ID: 21230431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applicability of the low-dissipation model: Carnot-like heat engines under Newton's law of cooling.
    Zhang Y; Huang Y
    Phys Rev E; 2020 Jul; 102(1-1):012151. PubMed ID: 32794970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal operating protocol to achieve efficiency at maximum power of heat engines.
    Ma YH; Xu D; Dong H; Sun CP
    Phys Rev E; 2018 Aug; 98(2-1):022133. PubMed ID: 30253629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency.
    Gerstenmaier YC
    Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale.
    Quan HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.