These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27967118)

  • 1. Vibration-induced coherence enhancement of the performance of a biological quantum heat engine.
    Chen HB; Chiu PY; Chen YN
    Phys Rev E; 2016 Nov; 94(5-1):052101. PubMed ID: 27967118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assistance of molecular vibrations on coherent energy transfer in photosynthesis from the view of a quantum heat engine.
    Zhang Z; Wang J
    J Phys Chem B; 2015 Apr; 119(13):4662-7. PubMed ID: 25776946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-lived quantum coherence and non-Markovianity of photosynthetic complexes.
    Chen HB; Lien JY; Hwang CC; Chen YN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042147. PubMed ID: 24827232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra.
    Fujihashi Y; Fleming GR; Ishizaki A
    J Chem Phys; 2015 Jun; 142(21):212403. PubMed ID: 26049423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient synchronisation and quantum coherence in a bio-inspired vibronic dimer.
    Siwiak-Jaszek S; Olaya-Castro A
    Faraday Discuss; 2019 Jul; 216(0):38-56. PubMed ID: 31062011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthetic reaction center as a quantum heat engine.
    Dorfman KE; Voronine DV; Mukamel S; Scully MO
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2746-51. PubMed ID: 23365138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delocalized quantum states enhance photocell efficiency.
    Zhang Y; Oh S; Alharbi FH; Engel GS; Kais S
    Phys Chem Chem Phys; 2015 Feb; 17(8):5743-50. PubMed ID: 25622523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer.
    Ishizaki A; Calhoun TR; Schlau-Cohen GS; Fleming GR
    Phys Chem Chem Phys; 2010 Jul; 12(27):7319-37. PubMed ID: 20544102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using non-Markovian measures to evaluate quantum master equations for photosynthesis.
    Chen HB; Lambert N; Cheng YC; Chen YN; Nori F
    Sci Rep; 2015 Aug; 5():12753. PubMed ID: 26238479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous quantum heat engine based on non-Markovian dynamics of an optomechanical Hamiltonian.
    Rasola M; Möttönen M
    Sci Rep; 2024 Apr; 14(1):9448. PubMed ID: 38658607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy.
    Han D; Xue B; Du J; Kobayashi T; Miyatake T; Tamiaki H; Xing X; Yuan W; Li Y; Leng Y
    Phys Chem Chem Phys; 2016 Sep; 18(35):24252-60. PubMed ID: 27531576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation.
    Oka H
    Sci Rep; 2016 May; 6():26058. PubMed ID: 27173144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forming and maintaining a heat engine for quantum biology.
    Matsuno K
    Biosystems; 2006 Jul; 85(1):23-9. PubMed ID: 16772129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Different Quantum Coherence on the Pump-Probe Polarization Anisotropy of Photosynthetic Light-Harvesting Complexes: A Computational Study.
    Bai S; Song K; Shi Q
    J Phys Chem Lett; 2015 May; 6(10):1954-60. PubMed ID: 26263276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal efficiency of a noisy quantum heat engine.
    Stefanatos D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012119. PubMed ID: 25122263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalence of quantum and classical coherence in electronic energy transfer.
    Briggs JS; Eisfeld A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051911. PubMed ID: 21728575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of quantum coherence and environmental fluctuations in chromophoric energy transport.
    Rebentrost P; Mohseni M; Aspuru-Guzik A
    J Phys Chem B; 2009 Jul; 113(29):9942-7. PubMed ID: 19603843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines.
    Klatzow J; Becker JN; Ledingham PM; Weinzetl C; Kaczmarek KT; Saunders DJ; Nunn J; Walmsley IA; Uzdin R; Poem E
    Phys Rev Lett; 2019 Mar; 122(11):110601. PubMed ID: 30951320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K
    Phys Rev E; 2022 Jul; 106(1-1):014114. PubMed ID: 35974499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton.
    Chuntonov L; Ma J
    J Phys Chem B; 2013 Oct; 117(43):13631-8. PubMed ID: 24079417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.