These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 27967170)
1. Maximum caliber inference and the stochastic Ising model. Cafaro C; Ali SA Phys Rev E; 2016 Nov; 94(5-1):052145. PubMed ID: 27967170 [TBL] [Abstract][Full Text] [Related]
2. Perspective: Maximum caliber is a general variational principle for dynamical systems. Dixit PD; Wagoner J; Weistuch C; Pressé S; Ghosh K; Dill KA J Chem Phys; 2018 Jan; 148(1):010901. PubMed ID: 29306272 [TBL] [Abstract][Full Text] [Related]
3. Maximum caliber inference of nonequilibrium processes. Otten M; Stock G J Chem Phys; 2010 Jul; 133(3):034119. PubMed ID: 20649320 [TBL] [Abstract][Full Text] [Related]
4. Communication: Maximum caliber is a general variational principle for nonequilibrium statistical mechanics. Hazoglou MJ; Walther V; Dixit PD; Dill KA J Chem Phys; 2015 Aug; 143(5):051104. PubMed ID: 26254635 [TBL] [Abstract][Full Text] [Related]
5. Markov processes follow from the principle of maximum caliber. Ge H; Pressé S; Ghosh K; Dill KA J Chem Phys; 2012 Feb; 136(6):064108. PubMed ID: 22360170 [TBL] [Abstract][Full Text] [Related]
6. Stationary properties of maximum-entropy random walks. Dixit PD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042149. PubMed ID: 26565210 [TBL] [Abstract][Full Text] [Related]
7. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics. Buendía GM; Rikvold PA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096 [TBL] [Abstract][Full Text] [Related]
8. Maximum entropy principle for stationary states underpinned by stochastic thermodynamics. Ford IJ Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052142. PubMed ID: 26651681 [TBL] [Abstract][Full Text] [Related]
9. Inferring Microscopic Kinetic Rates from Stationary State Distributions. Dixit PD; Dill KA J Chem Theory Comput; 2014 Aug; 10(8):3002-3005. PubMed ID: 25136269 [TBL] [Abstract][Full Text] [Related]
10. Approach to equilibrium and nonequilibrium stationary distributions of interacting many-particle systems that are coupled to different heat baths. Netz RR Phys Rev E; 2020 Feb; 101(2-1):022120. PubMed ID: 32168558 [TBL] [Abstract][Full Text] [Related]
11. Maximum Caliber: a variational approach applied to two-state dynamics. Stock G; Ghosh K; Dill KA J Chem Phys; 2008 May; 128(19):194102. PubMed ID: 18500851 [TBL] [Abstract][Full Text] [Related]
12. Maximum entropy approach to H-theory: Statistical mechanics of hierarchical systems. Vasconcelos GL; Salazar DSP; Macêdo AMS Phys Rev E; 2018 Feb; 97(2-1):022104. PubMed ID: 29548225 [TBL] [Abstract][Full Text] [Related]
13. The Maximum Caliber Variational Principle for Nonequilibria. Ghosh K; Dixit PD; Agozzino L; Dill KA Annu Rev Phys Chem; 2020 Apr; 71():213-238. PubMed ID: 32075515 [TBL] [Abstract][Full Text] [Related]
14. Inferring Transition Rates of Networks from Populations in Continuous-Time Markov Processes. Dixit PD; Jain A; Stock G; Dill KA J Chem Theory Comput; 2015 Nov; 11(11):5464-72. PubMed ID: 26574334 [TBL] [Abstract][Full Text] [Related]
15. Nonequilibrium antiferromagnetic mixed-spin Ising model. Godoy M; Figueiredo W Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036131. PubMed ID: 12366208 [TBL] [Abstract][Full Text] [Related]
16. Nonequilibrium phase transitions and stationary-state solutions of a three-dimensional random-field Ising model under a time-dependent periodic external field. Yüksel Y; Vatansever E; Akıncı U; Polat H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051123. PubMed ID: 23004719 [TBL] [Abstract][Full Text] [Related]
17. Probabilistic Inference for Dynamical Systems. Davis S; González D; Gutiérrez G Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265785 [TBL] [Abstract][Full Text] [Related]
18. Minimal constraints for maximum caliber analysis of dissipative steady-state systems. Agozzino L; Dill K Phys Rev E; 2019 Jul; 100(1-1):010105. PubMed ID: 31499924 [TBL] [Abstract][Full Text] [Related]
19. Conjugate variables in continuous maximum-entropy inference. Davis S; Gutiérrez G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051136. PubMed ID: 23214767 [TBL] [Abstract][Full Text] [Related]
20. Tensor-network algorithm for nonequilibrium relaxation in the thermodynamic limit. Hotta Y Phys Rev E; 2016 Jun; 93(6):062136. PubMed ID: 27415237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]