These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 2797179)

  • 41. Pulse-echo interaction in free-flying horseshoe bats, Rhinolophus ferrumequinum nippon.
    Shiori Y; Hiryu S; Watanabe Y; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2009 Sep; 126(3):EL80-5. PubMed ID: 19739702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural control of vocalization in bats: mapping of brainstem areas with electrical microstimulation eliciting species-specific echolocation calls in the rufous horseshoe bat.
    Schuller G; Radtke-Schuller S
    Exp Brain Res; 1990; 79(1):192-206. PubMed ID: 2311697
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inactivation of the DSCF area of the auditory cortex with muscimol disrupts frequency discrimination in the mustached bat.
    Riquimaroux H; Gaioni SJ; Suga N
    J Neurophysiol; 1992 Nov; 68(5):1613-23. PubMed ID: 1479434
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.
    Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Representation of echo roughness and its relationship to amplitude-modulation processing in the bat auditory midbrain.
    Borina F; Firzlaff U; Schuller G; Wiegrebe L
    Eur J Neurosci; 2008 May; 27(10):2724-32. PubMed ID: 18547252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation.
    Gaioni SJ; Riquimaroux H; Suga N
    J Neurophysiol; 1990 Dec; 64(6):1801-17. PubMed ID: 2074465
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bats use a neuronally implemented computational acoustic model to form sonar images.
    Simmons JA
    Curr Opin Neurobiol; 2012 Apr; 22(2):311-9. PubMed ID: 22436892
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolutionary aspects of bat echolocation.
    Neuweiler G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Apr; 189(4):245-56. PubMed ID: 12743729
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field.
    Schul J; Matt F; von Helversen O
    Proc Biol Sci; 2000 Sep; 267(1454):1711-5. PubMed ID: 12233766
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Echo amplitude sensitivity of bat auditory neurons improves with decreasing pulse-echo gap.
    Jen PH; Wu CH
    Neuroreport; 2015 Jan; 26(1):38-43. PubMed ID: 25426829
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight.
    Hiryu S; Katsura K; Lin LK; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2005 Dec; 118(6):3927-33. PubMed ID: 16419835
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Target range-sensitive neurons in the auditory cortex of the mustache bat.
    O'Neill WE; Suga N
    Science; 1979 Jan; 203(4375):69-73. PubMed ID: 758681
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neural axis representing target range in the auditory cortex of the mustache bat.
    Suga N; O'Neill WE
    Science; 1979 Oct; 206(4416):351-3. PubMed ID: 482944
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.
    Long CV; Flint JA; Lepper PA
    J Acoust Soc Am; 2010 Oct; 128(4):2238-45. PubMed ID: 20968394
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Model of the system for stabilizing the frequency of the echosignal of the Rhinolophus locator].
    Livshits MS; Pokotilo GP
    Biofizika; 1977; 22(1):133-7. PubMed ID: 849493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The evolution of echolocation in bats.
    Jones G; Teeling EC
    Trends Ecol Evol; 2006 Mar; 21(3):149-56. PubMed ID: 16701491
    [TBL] [Abstract][Full Text] [Related]  

  • 57. What the bat's voice tells the bat's brain.
    Ulanovsky N; Moss CF
    Proc Natl Acad Sci U S A; 2008 Jun; 105(25):8491-8. PubMed ID: 18562301
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Echolocation calls of bats are influenced by maternal effects and change over a lifetime.
    Jones G; Ransome RD
    Proc Biol Sci; 1993 May; 252(1334):125-8. PubMed ID: 8391702
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transmitter and receiver of the low frequency horseshoe bat Rhinolophus paradoxolophus are functionally matched for fluttering target detection.
    Schoeppler D; Kost K; Schnitzler HU; Denzinger A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):191-202. PubMed ID: 36136120
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Audiovocal interactions during development? Vocalisation in deafened young horseshoe bats vs. audition in vocalisation-impaired bats.
    Rübsamen R; Schäfer M
    J Comp Physiol A; 1990 Dec; 167(6):771-84. PubMed ID: 2086791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.