These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 2797180)

  • 21. Microheterogeneity of calcium signalling in dendrites.
    Pozzo-Miller LD; Connor JA; Andrews SB
    J Physiol; 2000 May; 525 Pt 1(Pt 1):53-61. PubMed ID: 10811724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature dependence of hypoxia-induced calcium accumulation in gerbil hippocampal slices.
    Mitani A; Kadoya F; Kataoka K
    Brain Res; 1991 Oct; 562(1):159-63. PubMed ID: 1799868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective fura-2 loading of presynaptic terminals and nerve cell processes by local perfusion in mammalian brain slice.
    Regehr WG; Tank DW
    J Neurosci Methods; 1991 Apr; 37(2):111-9. PubMed ID: 1881195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice.
    Tank DW; Sugimori M; Connor JA; Llinás RR
    Science; 1988 Nov; 242(4879):773-7. PubMed ID: 2847315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of hypoxia-induced calcium accumulation in gerbil hippocampal slice.
    Mitani A; Kadoya F; Kataoka K
    Neurosci Lett; 1990 Nov; 120(1):42-5. PubMed ID: 2293089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Afterpotential generation in hippocampal pyramidal cells.
    Wong RK; Prince DA
    J Neurophysiol; 1981 Jan; 45(1):86-97. PubMed ID: 6259299
    [No Abstract]   [Full Text] [Related]  

  • 27. Dendritic branch structure compartmentalizes voltage-dependent calcium influx in cortical layer 2/3 pyramidal cells.
    Landau AT; Park P; Wong-Campos JD; Tian H; Cohen AE; Sabatini BL
    Elife; 2022 Mar; 11():. PubMed ID: 35319464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dendritic sodium spikes endow neurons with inverse firing rate response to correlated synaptic activity.
    Górski T; Veltz R; Galtier M; Fragnaud H; Goldman JS; Teleńczuk B; Destexhe A
    J Comput Neurosci; 2018 Dec; 45(3):223-234. PubMed ID: 30547292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leveraging calcium imaging to illuminate circuit dysfunction in addiction.
    Siciliano CA; Tye KM
    Alcohol; 2019 Feb; 74():47-63. PubMed ID: 30470589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial calcium homeostasis: Implications for neurovascular and neurometabolic coupling.
    Kannurpatti SS
    J Cereb Blood Flow Metab; 2017 Feb; 37(2):381-395. PubMed ID: 27879386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory.
    Mukherjee B; Yuan Q
    Sci Rep; 2016 Oct; 6():35256. PubMed ID: 27739540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium's role as nuanced modulator of cellular physiology in the brain.
    Frazier HN; Maimaiti S; Anderson KL; Brewer LD; Gant JC; Porter NM; Thibault O
    Biochem Biophys Res Commun; 2017 Feb; 483(4):981-987. PubMed ID: 27553276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.
    Kannurpatti SS; Sanganahalli BG; Herman P; Hyder F
    NMR Biomed; 2015 Nov; 28(11):1579-88. PubMed ID: 26439799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A highly sensitive fluorescent indicator dye for calcium imaging of neural activity in vitro and in vivo.
    Tada M; Takeuchi A; Hashizume M; Kitamura K; Kano M
    Eur J Neurosci; 2014 Jun; 39(11):1720-8. PubMed ID: 24405482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-way communication with neural networks in vivo using focused light.
    Wilson NR; Schummers J; Runyan CA; Yan SX; Chen RE; Deng Y; Sur M
    Nat Protoc; 2013 Jun; 8(6):1184-203. PubMed ID: 23702834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial functional state impacts spontaneous neocortical activity and resting state FMRI.
    Sanganahalli BG; Herman P; Hyder F; Kannurpatti SS
    PLoS One; 2013; 8(5):e63317. PubMed ID: 23650561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial calcium uptake capacity modulates neocortical excitability.
    Sanganahalli BG; Herman P; Hyder F; Kannurpatti SS
    J Cereb Blood Flow Metab; 2013 Jul; 33(7):1115-26. PubMed ID: 23591650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small-conductance Ca2+-activated K+ channels modulate action potential-induced Ca2+ transients in hippocampal neurons.
    Tonini R; Ferraro T; Sampedro-Castañeda M; Cavaccini A; Stocker M; Richards CD; Pedarzani P
    J Neurophysiol; 2013 Mar; 109(6):1514-24. PubMed ID: 23255726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualization and manipulation of neural activity in the developing vertebrate nervous system.
    Zhang J; Ackman JB; Dhande OS; Crair MC
    Front Mol Neurosci; 2011; 4():43. PubMed ID: 22121343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains.
    Stanley DA; Bardakjian BL; Spano ML; Ditto WL
    J Comput Neurosci; 2011 Nov; 31(3):647-66. PubMed ID: 21538141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.