These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27973348)

  • 41. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.
    Wu C; Cai J; Zhang Q; Zhou X; Zhu Y; Shen PK; Zhang K
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26512-21. PubMed ID: 26575957
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MgCo
    Liu Z; Li A; Qiu Y; Zhao Q; Zhong Y; Cui L; Yang W; Razal JM; Barrow CJ; Liu J
    J Colloid Interface Sci; 2021 Jun; 592():455-467. PubMed ID: 33711647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activated Microporous Carbon Derived from Almond Shells for High Energy Density Asymmetric Supercapacitors.
    Wu C; Yang S; Cai J; Zhang Q; Zhu Y; Zhang K
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15288-96. PubMed ID: 27253880
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Co₃O₄@CoS Core-Shell Nanosheets on Carbon Cloth for High Performance Supercapacitor Electrodes.
    Ning J; Zhang T; He Y; Jia C; Saha P; Cheng Q
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28772968
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A High-Energy-Density Hybrid Supercapacitor with P-Ni(OH)
    Li K; Zhao B; Bai J; Ma H; Fang Z; Zhu X; Sun Y
    Small; 2020 Aug; 16(32):e2001974. PubMed ID: 32613708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bifunctional bamboo-like CoSe
    Chen T; Li S; Gui P; Wen J; Fu X; Fang G
    Nanotechnology; 2018 May; 29(20):205401. PubMed ID: 29469814
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode.
    Kumar R; Singh RK; Dubey PK; Singh DP; Yadav RM
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15042-51. PubMed ID: 26086175
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rational synthesis of CoFeP@nickel-manganese sulfide core-shell nanoarrays for hybrid supercapacitors.
    Wang Y; Zhang Y; Du C; Chen J; Tian Z; Xie M; Wan L
    Dalton Trans; 2021 Nov; 50(46):17181-17193. PubMed ID: 34782904
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mesoporous CoO nanocubes @ continuous 3D porous carbon skeleton of rose-based electrode for high-performance supercapacitor.
    Lan D; Chen Y; Chen P; Chen X; Wu X; Pu X; Zeng Y; Zhu Z
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11839-45. PubMed ID: 25068550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. α-Fe2O3@PANI Core-Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors.
    Lu XF; Chen XY; Zhou W; Tong YX; Li GR
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14843-50. PubMed ID: 26090902
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of CoO-Decorated Graphene Hollow Nanoballs for High-Performance Flexible Supercapacitors.
    Tseng CA; Sahoo PK; Lee CP; Lin YT; Xu JH; Chen YT
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40426-40432. PubMed ID: 32790275
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flexible nickel disulfide nanoparticles-anchored carbon nanofiber hybrid mat as a flexible binder-free cathode for solid-state asymmetric supercapacitors.
    Anand S; Ahmad MW; Fatima A; Kumar A; Bharadwaj A; Yang DJ; Choudhury A
    Nanotechnology; 2021 Sep; 32(49):. PubMed ID: 34433156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density.
    Hao P; Zhao Z; Li L; Tuan CC; Li H; Sang Y; Jiang H; Wong CP; Liu H
    Nanoscale; 2015 Sep; 7(34):14401-12. PubMed ID: 26248645
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni(OH)
    Shen J; Li X; Wan L; Liang K; Tay BK; Kong L; Yan X
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):668-676. PubMed ID: 27936554
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In Situ Growth of Free-Standing All Metal Oxide Asymmetric Supercapacitor.
    Yin BS; Wang ZB; Zhang SW; Liu C; Ren QQ; Ke K
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26019-26029. PubMed ID: 27626129
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of Nanoporous Carbon Derived from Microalgae and Its CoO Composite on Capacitance.
    Zhou M; Catanach J; Gomez J; Richins S; Deng S
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4362-4373. PubMed ID: 27681199
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core-shell nanostructures for high-performance asymmetric supercapacitors.
    Zhu J; Huang L; Xiao Y; Shen L; Chen Q; Shi W
    Nanoscale; 2014 Jun; 6(12):6772-81. PubMed ID: 24828233
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.
    Luan F; Wang G; Ling Y; Lu X; Wang H; Tong Y; Liu XX; Li Y
    Nanoscale; 2013 Sep; 5(17):7984-90. PubMed ID: 23864110
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Construction of Hierarchical α-MnO2 Nanowires@Ultrathin δ-MnO2 Nanosheets Core-Shell Nanostructure with Excellent Cycling Stability for High-Power Asymmetric Supercapacitor Electrodes.
    Ma Z; Shao G; Fan Y; Wang G; Song J; Shen D
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9050-8. PubMed ID: 27010242
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D TiO2@Ni(OH)2 Core-shell Arrays with Tunable Nanostructure for Hybrid Supercapacitor Application.
    Ke Q; Zheng M; Liu H; Guan C; Mao L; Wang J
    Sci Rep; 2015 Sep; 5():13940. PubMed ID: 26353970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.