These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 27973404)
1. Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products. Zheng Y; Wu B; Zhang M; Zeng H Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973404 [TBL] [Abstract][Full Text] [Related]
2. Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean. Liao C; Wang J; Dong T; Shang J; Liu J; Song Y Sci Total Environ; 2019 Feb; 650(Pt 2):1707-1721. PubMed ID: 30273730 [TBL] [Abstract][Full Text] [Related]
3. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product. Wang Z; Schaaf CB; Sun Q; Kim J; Erb AM; Gao F; Román MO; Yang Y; Petroy S; Taylor JR; Masek JG; Morisette JT; Zhang X; Papuga SA Int J Appl Earth Obs Geoinf; 2017 Jul; 59():104-117. PubMed ID: 33154713 [TBL] [Abstract][Full Text] [Related]
4. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland. Ren S; Chen X; An S Int J Biometeorol; 2017 Apr; 61(4):601-612. PubMed ID: 27562030 [TBL] [Abstract][Full Text] [Related]
5. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.]. Zuo L; Wang HJ; Liu RG; Liu Y; Shang R Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):599-606. PubMed ID: 29692076 [TBL] [Abstract][Full Text] [Related]
6. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau]. Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255 [TBL] [Abstract][Full Text] [Related]
7. Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2. Meroni M; d'Andrimont R; Vrieling A; Fasbender D; Lemoine G; Rembold F; Seguini L; Verhegghen A Remote Sens Environ; 2021 Feb; 253():112232. PubMed ID: 33536689 [TBL] [Abstract][Full Text] [Related]
8. Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion. Wu M; Yang C; Song X; Hoffmann WC; Huang W; Niu Z; Wang C; Li W; Yu B Sci Rep; 2018 Jan; 8(1):2016. PubMed ID: 29386526 [TBL] [Abstract][Full Text] [Related]
9. Characterizing spatiotemporal dynamics in phenology of urban ecosystems based on Landsat data. Li X; Zhou Y; Asrar GR; Meng L Sci Total Environ; 2017 Dec; 605-606():721-734. PubMed ID: 28675882 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index. Ji Z; Pan Y; Zhu X; Wang J; Li Q Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671356 [TBL] [Abstract][Full Text] [Related]
11. Estimation of Daily Terrestrial Latent Heat Flux with High Spatial Resolution from MODIS and Chinese GF-1 Data. Bei X; Yao Y; Zhang L; Lin Y; Liu S; Jia K; Zhang X; Shang K; Yang J; Chen X; Guo X Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429110 [TBL] [Abstract][Full Text] [Related]
12. Alpine vegetation phenology dynamic over 16years and its covariation with climate in a semi-arid region of China. Zhou J; Cai W; Qin Y; Lai L; Guan T; Zhang X; Jiang L; Du H; Yang D; Cong Z; Zheng Y Sci Total Environ; 2016 Dec; 572():119-128. PubMed ID: 27494658 [TBL] [Abstract][Full Text] [Related]
13. Monitoring Spatio-Temporal Changes of Terrestrial Ecosystem Soil Water Use Efficiency in Northeast China Using Time Series Remote Sensing Data. Qi H; Huang F; Zhai H Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30917616 [TBL] [Abstract][Full Text] [Related]
14. Dry season temperature and rainy season precipitation significantly affect the spatio-temporal pattern of rubber plantation phenology in Yunnan province. Lai H; Chen B; Yin X; Wang G; Wang X; Yun T; Lan G; Wu Z; Yang C; Kou W Front Plant Sci; 2023; 14():1283315. PubMed ID: 38155856 [TBL] [Abstract][Full Text] [Related]
15. Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq. Qader SH; Dash J; Atkinson PM Sci Total Environ; 2018 Feb; 613-614():250-262. PubMed ID: 28915461 [TBL] [Abstract][Full Text] [Related]
16. Validating MODIS and Sentinel-2 NDVI Products at a Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors. Lange M; Dechant B; Rebmann C; Vohland M; Cuntz M; Doktor D Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28800065 [TBL] [Abstract][Full Text] [Related]
17. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring. Wu M; Huang W; Niu Z; Wang C Int J Environ Res Public Health; 2015 Aug; 12(8):9920-37. PubMed ID: 26308017 [TBL] [Abstract][Full Text] [Related]
18. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: an example at corn fields in western Mexico. Chen PY; Fedosejevs G; Tiscareño-López M; Arnold JG Environ Monit Assess; 2006 Aug; 119(1-3):69-82. PubMed ID: 16362566 [TBL] [Abstract][Full Text] [Related]
19. [Identification of forest vegetation types in southern China based on spatio-temporal fusion of GF-1 WFV and MODIS data]. Xu L; Ouyang XZ; Pan P; Zang H; Liu J; Yang K Ying Yong Sheng Tai Xue Bao; 2022 Jul; 33(7):1948-1956. PubMed ID: 36052799 [TBL] [Abstract][Full Text] [Related]
20. Analysis of Differences in Phenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index. Wang C; Li J; Liu Q; Zhong B; Wu S; Xia C Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]