These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27973520)

  • 1. Multimode photon-exciton coupling in an organic-dye-attached photonic quasicrystal.
    Zhang K; Xu Y; Chen TY; Jing H; Shi WB; Xiong B; Peng RW; Wang M
    Opt Lett; 2016 Dec; 41(24):5740-5743. PubMed ID: 27973520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization-dependent strong coupling between surface plasmon polaritons and excitons in an organic-dye-doped nanostructure.
    Zhang K; Chen TY; Shi WB; Li CY; Fan RH; Wang QJ; Peng RW; Wang M
    Opt Lett; 2017 Jul; 42(14):2834-2837. PubMed ID: 28708181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton polaritons in one-dimensional metal-semiconductor photonic crystals.
    Márquez-Islas R; Flores-Desirena B; Pérez-Rodríguez F
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6584-8. PubMed ID: 19205244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralong-Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Exciton-Polariton Propagation.
    Hou S; Khatoniar M; Ding K; Qu Y; Napolov A; Menon VM; Forrest SR
    Adv Mater; 2020 Jul; 32(28):e2002127. PubMed ID: 32484288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost-Effective Realization of Multimode Exciton-Polaritons in Single-Crystalline Microplates of a Layered Metal-Organic Framework.
    Kottilil D; Gupta M; Tomar K; Zhou F; Vijayan C; Bharadwaj PK; Ji W
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7288-7295. PubMed ID: 30697998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe
    Wurdack M; Lundt N; Klaas M; Baumann V; Kavokin AV; Höfling S; Schneider C
    Nat Commun; 2017 Aug; 8(1):259. PubMed ID: 28811462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-isotropic surface plasmon polariton generation through near-field coupling to a penrose pattern of silver nanoparticles.
    Verre R; Antosiewicz TJ; Svedendahl M; Lodewijks K; Shegai T; Käll M
    ACS Nano; 2014 Sep; 8(9):9286-94. PubMed ID: 25182843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Reverse Intersystem Crossing Promoted by Triplet Exciton-Photon Coupling.
    Ou Q; Shao Y; Shuai Z
    J Am Chem Soc; 2021 Oct; 143(42):17786-17792. PubMed ID: 34644062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic crystals for controlling strong coupling in van der Waals materials.
    Gogna R; Zhang L; Wang Z; Deng H
    Opt Express; 2019 Aug; 27(16):22700-22707. PubMed ID: 31510556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong Exciton-Plasmon Coupling in Silver Nanowire Nanocavities.
    Beane G; Brown BS; Johns P; Devkota T; Hartland GV
    J Phys Chem Lett; 2018 Apr; 9(7):1676-1681. PubMed ID: 29547298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A GaAs polariton light-emitting diode operating near room temperature.
    Tsintzos SI; Pelekanos NT; Konstantinidis G; Hatzopoulos Z; Savvidis PG
    Nature; 2008 May; 453(7193):372-5. PubMed ID: 18480820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps.
    Nagasawa F; Takase M; Murakoshi K
    J Phys Chem Lett; 2014 Jan; 5(1):14-9. PubMed ID: 26276174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation.
    Rodriguez SR; Feist J; Verschuuren MA; Garcia Vidal FJ; Gómez Rivas J
    Phys Rev Lett; 2013 Oct; 111(16):166802. PubMed ID: 24182291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating the light-matter interaction in a topological photonic crystal heterostructure.
    Ming Qing Y; Feng Ma H; Wei Wu L; Jun Cui T
    Opt Express; 2020 Nov; 28(23):34904-34915. PubMed ID: 33182948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent photonic coupling of semiconductor quantum dots.
    Reitzenstein S; Löffler A; Hofmann C; Kubanek A; Kamp M; Reithmaier JP; Forchel A; Kulakovskii VD; Keldysh LV; Ponomarev IV; Reinecke TL
    Opt Lett; 2006 Jun; 31(11):1738-40. PubMed ID: 16688279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First principles modeling of exciton-polaritons in polydiacetylene chains.
    Alvertis AM; Pandya R; Quarti C; Legrand L; Barisien T; Monserrat B; Musser AJ; Rao A; Chin AW; Beljonne D
    J Chem Phys; 2020 Aug; 153(8):084103. PubMed ID: 32872885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperbolic Dispersion Arising from Anisotropic Excitons in Two-Dimensional Perovskites.
    Guo P; Huang W; Stoumpos CC; Mao L; Gong J; Zeng L; Diroll BT; Xia Y; Ma X; Gosztola DJ; Xu T; Ketterson JB; Bedzyk MJ; Facchetti A; Marks TJ; Kanatzidis MG; Schaller RD
    Phys Rev Lett; 2018 Sep; 121(12):127401. PubMed ID: 30296165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamically controlling the emission of single excitons in photonic crystal cavities.
    Pagliano F; Cho Y; Xia T; van Otten F; Johne R; Fiore A
    Nat Commun; 2014 Dec; 5():5786. PubMed ID: 25503405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active control of the strong coupling regime between porphyrin excitons and surface plasmon polaritons.
    Berrier A; Cools R; Arnold C; Offermans P; Crego-Calama M; Brongersma SH; Gómez-Rivas J
    ACS Nano; 2011 Aug; 5(8):6226-32. PubMed ID: 21776964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic architectures for equilibrium high-temperature Bose-Einstein condensation in dichalcogenide monolayers.
    Jiang JH; John S
    Sci Rep; 2014 Dec; 4():7432. PubMed ID: 25503586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.