These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27973556)

  • 1. Application of Mixed Effects Limits of Agreement in the Presence of Multiple Sources of Variability: Exemplar from the Comparison of Several Devices to Measure Respiratory Rate in COPD Patients.
    Parker RA; Weir CJ; Rubio N; Rabinovich R; Pinnock H; Hanley J; McCloughan L; Drost EM; Mantoani LC; MacNee W; McKinstry B
    PLoS One; 2016; 11(12):e0168321. PubMed ID: 27973556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of 7 Different Sensors for Detecting Low Respiratory Rates Using a Single Breath Detection Algorithm in Nonintubated, Sedated Volunteers.
    Ermer S; Brewer L; Orr J; Egan TD; Johnson K
    Anesth Analg; 2019 Aug; 129(2):399-408. PubMed ID: 30234539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicenter Study Validating Accuracy of a Continuous Respiratory Rate Measurement Derived From Pulse Oximetry: A Comparison With Capnography.
    Bergese SD; Mestek ML; Kelley SD; McIntyre R; Uribe AA; Sethi R; Watson JN; Addison PS
    Anesth Analg; 2017 Apr; 124(4):1153-1159. PubMed ID: 28099286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of respiratory rate and effort from a chest-worn accelerometer using constrained and recursive principal component analysis.
    Schipper F; van Sloun RJG; Grassi A; Derkx R; Overeem S; Fonseca P
    Physiol Meas; 2021 May; 42(4):. PubMed ID: 33739305
    [No Abstract]   [Full Text] [Related]  

  • 5. Respiration Rate Estimation Based on Independent Component Analysis of Accelerometer Data: Pilot Single-Arm Intervention Study.
    Lee J; Yoo SK
    JMIR Mhealth Uhealth; 2020 Aug; 8(8):e17803. PubMed ID: 32773384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating instantaneous respiratory rate from the photoplethysmogram.
    Dehkordi P; Garde A; Molavi B; Petersen CL; Ansermino JM; Dumont GA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6150-3. PubMed ID: 26737696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory signal derived from the smartphone built-in accelerometer during a Respiratory Load Protocol.
    Estrada L; Torres A; Sarlabous L; Jané R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6768-71. PubMed ID: 26737847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agreement between wireless and standard measurements of vital signs in acute exacerbation of chronic obstructive pulmonary disease: a clinical validation study.
    Elvekjaer M; Carlsson CJ; Rasmussen SM; Porsbjerg CM; Grønbæk KK; Haahr-Raunkjær C; Sørensen HBD; Aasvang EK; Meyhoff CS
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33984846
    [No Abstract]   [Full Text] [Related]  

  • 9. Accuracy of remote continuous respiratory rate monitoring technologies intended for low care clinical settings: a prospective observational study.
    van Loon K; Peelen LM; van de Vlasakker EC; Kalkman CJ; van Wolfswinkel L; van Zaane B
    Can J Anaesth; 2018 Dec; 65(12):1324-1332. PubMed ID: 30194672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability and repeatability of toe pressures measured with laser Doppler and portable and stationary photoplethysmography devices.
    Widmer LW; Vikatmaa P; Aho P; Lepäntalo M; Venermo M
    Ann Vasc Surg; 2012 Apr; 26(3):404-10. PubMed ID: 22285350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: agreement of ear photoplethysmography with ECG measurements, in 343 subjects.
    Weinschenk SW; Beise RD; Lorenz J
    Eur J Appl Physiol; 2016 Aug; 116(8):1527-35. PubMed ID: 27278521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using multiple agreement methods for continuous repeated measures data: a tutorial for practitioners.
    Parker RA; Scott C; Inácio V; Stevens NT
    BMC Med Res Methodol; 2020 Jun; 20(1):154. PubMed ID: 32532218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer.
    Pandia K; Inan OT; Kovacs GT; Giovangrandi L
    Physiol Meas; 2012 Oct; 33(10):1643-60. PubMed ID: 22986375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Differential Inertial Wearable Device for Breathing Parameter Detection: Hardware and Firmware Development, Experimental Characterization.
    De Fazio R; Greco MR; De Vittorio M; Visconti P
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring central pulmonary pressures during exercise in COPD: how to cope with respiratory effects.
    Boerrigter BG; Waxman AB; Westerhof N; Vonk-Noordegraaf A; Systrom DM
    Eur Respir J; 2014 May; 43(5):1316-25. PubMed ID: 24177003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity and Usability of Physical Activity Monitoring in Patients with Chronic Obstructive Pulmonary Disease (COPD).
    Boeselt T; Spielmanns M; Nell C; Storre JH; Windisch W; Magerhans L; Beutel B; Kenn K; Greulich T; Alter P; Vogelmeier C; Koczulla AR
    PLoS One; 2016; 11(6):e0157229. PubMed ID: 27305105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact-free unconstraint respiratory measurements with load cells under the bed in awake healthy volunteers: breath-by-breath comparison with pneumotachography.
    Isono S; Nozaki-Taguchi N; Hasegawa M; Kato S; Todoroki S; Masuda S; Iida N; Nishimura T; Noto M; Sato Y
    J Appl Physiol (1985); 2019 May; 126(5):1432-1441. PubMed ID: 30763161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study.
    Nelson BW; Allen NB
    JMIR Mhealth Uhealth; 2019 Mar; 7(3):e10828. PubMed ID: 30855232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of respiratory rates based on photoplethysmographic measurements at the sternum.
    Chreiteh SS; Belhage B; Hoppe K; Branebjerg J; Haahr R; Duun S; Thomsen EV
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6570-3. PubMed ID: 26737798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory rate monitoring in healthy volunteers by central photoplethysmography compared to capnography.
    Henricson J; Glasin J; Rindebratt S; Wilhelms D
    J Biophotonics; 2022 Apr; 15(4):e202100270. PubMed ID: 34874126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.