These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27973679)

  • 1. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury.
    Karelis AD; Carvalho LP; Castillo MJ; Gagnon DH; Aubertin-Leheudre M
    J Rehabil Med; 2017 Jan; 49(1):84-87. PubMed ID: 27973679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiorespiratory demand and rate of perceived exertion during overground walking with a robotic exoskeleton in long-term manual wheelchair users with chronic spinal cord injury: A cross-sectional study.
    Escalona MJ; Brosseau R; Vermette M; Comtois AS; Duclos C; Aubertin-Leheudre M; Gagnon DH
    Ann Phys Rehabil Med; 2018 Jul; 61(4):215-223. PubMed ID: 29371106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.
    Gagnon DH; Vermette M; Duclos C; Aubertin-Leheudre M; Ahmed S; Kairy D
    Disabil Rehabil Assist Technol; 2019 Feb; 14(2):138-145. PubMed ID: 29256640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Exoskeletal-Assisted Walking on Soft Tissue Body Composition in Persons With Spinal Cord Injury.
    Asselin P; Cirnigliaro CM; Kornfeld S; Knezevic S; Lackow R; Elliott M; Bauman WA; Spungen AM
    Arch Phys Med Rehabil; 2021 Feb; 102(2):196-202. PubMed ID: 33171129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study.
    Benson I; Hart K; Tussler D; van Middendorp JJ
    Clin Rehabil; 2016 Jan; 30(1):73-84. PubMed ID: 25761635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic Walking to Mitigate Bone Mineral Density Decline and Adverse Body Composition in Individuals With Incomplete Spinal Cord Injury: A Pilot Randomized Clinical Trial.
    Shackleton C; Evans R; West S; Derman W; Albertus Y
    Am J Phys Med Rehabil; 2022 Oct; 101(10):931-936. PubMed ID: 34864766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
    Pinto D; Garnier M; Barbas J; Chang SH; Charlifue S; Field-Fote E; Furbish C; Tefertiller C; Mummidisetty CK; Taylor H; Jayaraman A; Heinemann AW
    J Neuroeng Rehabil; 2020 Jan; 17(1):4. PubMed ID: 31924224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential Effects of an Exoskeleton-Assisted Overground Walking Program for Individuals With Spinal Cord Injury Who Uses a Wheelchair on Imaging and Serum Markers of Bone Strength: Pre-Post Study.
    Bass A; Morin SN; Guidea M; Lam JTAT; Karelis AD; Aubertin-Leheudre M; Gagnon DH;
    JMIR Rehabil Assist Technol; 2024 Jan; 11():e53084. PubMed ID: 38163294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury.
    Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF
    Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463
    [No Abstract]   [Full Text] [Related]  

  • 12. Spasticity and bone density after a spinal cord injury.
    Löfvenmark I; Werhagen L; Norrbrink C
    J Rehabil Med; 2009 Nov; 41(13):1080-4. PubMed ID: 19894005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury.
    Evans N; Hartigan C; Kandilakis C; Pharo E; Clesson I
    Top Spinal Cord Inj Rehabil; 2015; 21(2):122-32. PubMed ID: 26364281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic review of the effects of robotic exoskeleton training on energy expenditure and body composition in adults with spinal cord injury.
    Rigoli A; Francis L; Nicholson M; Weber G; Redhead J; Iyer P
    Int J Rehabil Res; 2024 Jun; 47(2):64-74. PubMed ID: 38616768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of an Overground Walking Program With a Robotic Exoskeleton on Long-Term Manual Wheelchair Users With a Chronic Spinal Cord Injury: Protocol for a Self-Controlled Interventional Study.
    Bass A; Aubertin-Leheudre M; Vincent C; Karelis AD; Morin SN; McKerral M; Duclos C; Gagnon DH
    JMIR Res Protoc; 2020 Sep; 9(9):e19251. PubMed ID: 32663160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Wearable Powered Exoskeletal Training on Functional Mobility, Physiological Health and Quality of Life in Non-ambulatory Spinal Cord Injury Patients.
    Kim HS; Park JH; Lee HS; Lee JY; Jung JW; Park SB; Hyun DJ; Park S; Yoon J; Lim H; Choi YY; Kim MJ
    J Korean Med Sci; 2021 Mar; 36(12):e80. PubMed ID: 33783145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exoskeleton Training May Improve Level of Physical Activity After Spinal Cord Injury: A Case Series.
    Gorgey AS; Wade R; Sumrell R; Villadelgado L; Khalil RE; Lavis T
    Top Spinal Cord Inj Rehabil; 2017; 23(3):245-255. PubMed ID: 29339900
    [No Abstract]   [Full Text] [Related]  

  • 19. Sarcopenic Obesity in Adults With Spinal Cord Injury: A Cross-Sectional Study.
    Pelletier CA; Miyatani M; Giangregorio L; Craven BC
    Arch Phys Med Rehabil; 2016 Nov; 97(11):1931-1937. PubMed ID: 27282328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury?
    Giangregorio LM; Webber CE; Phillips SM; Hicks AL; Craven BC; Bugaresti JM; McCartney N
    Appl Physiol Nutr Metab; 2006 Jun; 31(3):283-91. PubMed ID: 16770357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.