These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 27973769)
1. Plasmonic Schirmer Strip for Human Tear-Based Gouty Arthritis Diagnosis Using Surface-Enhanced Raman Scattering. Park M; Jung H; Jeong Y; Jeong KH ACS Nano; 2017 Jan; 11(1):438-443. PubMed ID: 27973769 [TBL] [Abstract][Full Text] [Related]
2. Plasmonic nanomaterials-based flexible strips for the SERS detection of gouty arthritis. Lien MC; Yeh IH; Lu YC; Liu KK Analyst; 2023 Aug; 148(17):4109-4115. PubMed ID: 37493461 [TBL] [Abstract][Full Text] [Related]
3. In situ fabrication of label-free optical sensing paper strips for the rapid surface-enhanced Raman scattering (SERS) detection of brassinosteroids in plant tissues. Chen M; Zhang Z; Liu M; Qiu C; Yang H; Chen X Talanta; 2017 Apr; 165():313-320. PubMed ID: 28153259 [TBL] [Abstract][Full Text] [Related]
4. Instrument-Free Synthesizable Fabrication of Label-Free Optical Biosensing Paper Strips for the Early Detection of Infectious Keratoconjunctivitides. Kim W; Lee JC; Shin JH; Jin KH; Park HK; Choi S Anal Chem; 2016 May; 88(10):5531-7. PubMed ID: 27127842 [TBL] [Abstract][Full Text] [Related]
5. Metal-Organic Framework-Based Surface-Enhanced Raman Scattering Sensing Platform for Trace Malondialdehyde Detection in Tears. Li J; Yu H; Zhao J; Qiao X; Chen X; Lu Z; Li Q; Lin H; Wu W; Zeng W; Yang Z; Feng Y Nano Lett; 2024 Jun; 24(25):7792-7799. PubMed ID: 38860501 [TBL] [Abstract][Full Text] [Related]
6. Post-collection processing of Schirmer strip-collected human tear fluid impacts protein content. Denisin AK; Karns K; Herr AE Analyst; 2012 Nov; 137(21):5088-96. PubMed ID: 22991688 [TBL] [Abstract][Full Text] [Related]
7. Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core-Gold Shell Nanoparticle Structures. Kim W; Lee JC; Lee GJ; Park HK; Lee A; Choi S Anal Chem; 2017 Jun; 89(12):6448-6454. PubMed ID: 28509533 [TBL] [Abstract][Full Text] [Related]
8. A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Kim W; Lee SH; Ahn YJ; Lee SH; Ryu J; Choi SK; Choi S Biosens Bioelectron; 2018 Jul; 111():59-65. PubMed ID: 29649653 [TBL] [Abstract][Full Text] [Related]
9. A paper-based SERS test strip for quantitative detection of Mucin-1 in whole blood. Hu SW; Qiao S; Pan JB; Kang B; Xu JJ; Chen HY Talanta; 2018 Mar; 179():9-14. PubMed ID: 29310319 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Human Tear Fluid by Means of Surface-Enhanced Raman Spectroscopy. Camerlingo C; Lisitskiy M; Lepore M; Portaccio M; Montorio D; Prete SD; Cennamo G Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866575 [TBL] [Abstract][Full Text] [Related]
11. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles. Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007 [TBL] [Abstract][Full Text] [Related]
12. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833 [TBL] [Abstract][Full Text] [Related]
13. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
14. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells. Adarsh N; Ramya AN; Maiti KK; Ramaiah D Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314 [TBL] [Abstract][Full Text] [Related]
15. Label-Free Surface-Enhanced Raman Spectroscopy Biosensor for On-Site Breast Cancer Detection Using Human Tears. Kim S; Kim TG; Lee SH; Kim W; Bang A; Moon SW; Song J; Shin JH; Yu JS; Choi S ACS Appl Mater Interfaces; 2020 Feb; 12(7):7897-7904. PubMed ID: 31971765 [TBL] [Abstract][Full Text] [Related]
16. Quantification of uric acid concentration in tears by using PDMS inverse opal structure surface-enhanced Raman scattering substrates: Application in hyperuricemia. Li J; Cui X; Yang X; Qiu Y; Li Y; Cao H; Wang D; He W; Feng Y; Yang Z Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121326. PubMed ID: 35561446 [TBL] [Abstract][Full Text] [Related]
17. Detection of glucose in diabetic tears by using gold nanoparticles and MXene composite surface-enhanced Raman scattering substrates. Cui X; Li J; Li Y; Liu M; Qiao J; Wang D; Cao H; He W; Feng Y; Yang Z Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120432. PubMed ID: 34607092 [TBL] [Abstract][Full Text] [Related]
18. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications. Park M; Hwang CSH; Jeong KH ACS Appl Mater Interfaces; 2018 Jan; 10(1):290-295. PubMed ID: 29220574 [TBL] [Abstract][Full Text] [Related]
20. Analysis of tear uptake by the Schirmer tear test strip in the canine eye. Williams DL Vet Ophthalmol; 2005; 8(5):325-30. PubMed ID: 16178843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]