These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27973828)

  • 1. Time-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment.
    Zho CC; Schwartz BJ
    J Phys Chem B; 2016 Dec; 120(49):12604-12614. PubMed ID: 27973828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of the hydrated electron's excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy.
    Farr EP; Zho CC; Challa JR; Schwartz BJ
    J Chem Phys; 2017 Aug; 147(7):074504. PubMed ID: 28830177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models.
    Zho CC; Farr EP; Glover WJ; Schwartz BJ
    J Chem Phys; 2017 Aug; 147(7):074503. PubMed ID: 28830174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of electron solvation in molecular clusters.
    Ehrler OT; Neumark DM
    Acc Chem Res; 2009 Jun; 42(6):769-77. PubMed ID: 19361211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy.
    Elkins MH; Williams HL; Neumark DM
    J Chem Phys; 2016 May; 144(18):184503. PubMed ID: 27179491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the hydrated electron occupy a cavity?
    Larsen RE; Glover WJ; Schwartz BJ
    Science; 2010 Jul; 329(5987):65-9. PubMed ID: 20595609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonadiabatic Dynamics Studied by Liquid-Jet Time-Resolved Photoelectron Spectroscopy.
    Heim ZN; Neumark DM
    Acc Chem Res; 2022 Dec; 55(24):3652-3662. PubMed ID: 36480155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron.
    Casey JR; Larsen RE; Schwartz BJ
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2712-7. PubMed ID: 23382233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons.
    Larsen RE; Schwartz BJ
    J Phys Chem B; 2006 May; 110(19):9681-91. PubMed ID: 16686519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free Energies of Cavity and Noncavity Hydrated Electrons Near the Instantaneous Air/Water Interface.
    Casey JR; Schwartz BJ; Glover WJ
    J Phys Chem Lett; 2016 Aug; 7(16):3192-8. PubMed ID: 27479028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the role of decoherence in condensed-phase nonadiabatic dynamics: a comparison of different mixed quantum/classical simulation algorithms for the excited hydrated electron.
    Larsen RE; Bedard-Hearn MJ; Schwartz BJ
    J Phys Chem B; 2006 Oct; 110(40):20055-66. PubMed ID: 17020394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear quantum effects on the nonadiabatic decay mechanism of an excited hydrated electron.
    Borgis D; Rossky PJ; Turi L
    J Chem Phys; 2007 Nov; 127(17):174508. PubMed ID: 17994828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation mechanism of the hydrated electron.
    Elkins MH; Williams HL; Shreve AT; Neumark DM
    Science; 2013 Dec; 342(6165):1496-9. PubMed ID: 24357314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vacuum ultraviolet excited state dynamics of the smallest ring, cyclopropane. II. Time-resolved photoelectron spectroscopy and
    Coates MR; Larsen MAB; Forbes R; Neville SP; Boguslavskiy AE; Wilkinson I; Sølling TI; Lausten R; Stolow A; Schuurman MS
    J Chem Phys; 2018 Oct; 149(14):144311. PubMed ID: 30316260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signatures of Conical Intersection Dynamics in the Time-Resolved Photoelectron Spectrum of Furan: Theoretical Modeling with an Ensemble Density Functional Theory Method.
    Filatov M; Lee S; Nakata H; Choi CH
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33924097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving Nonadiabatic Dynamics of Hydrated Electrons Using Ultrafast Photoemission Anisotropy.
    Karashima S; Yamamoto Y; Suzuki T
    Phys Rev Lett; 2016 Apr; 116(13):137601. PubMed ID: 27082002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast relaxation dynamics of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin studied by fluorescence up-conversion and transient absorption spectroscopy.
    Kumar PH; Venkatesh Y; Siva D; Ramakrishna B; Bangal PR
    J Phys Chem A; 2015 Feb; 119(8):1267-78. PubMed ID: 25633537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent.
    Elkins MH; Williams HL; Neumark DM
    J Chem Phys; 2015 Jun; 142(23):234501. PubMed ID: 26093562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 2. A prediction for the observation of hydrated dielectrons with pump-probe spectroscopy.
    Larsen RE; Schwartz BJ
    J Phys Chem B; 2006 May; 110(19):9692-7. PubMed ID: 16686520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.