BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27973889)

  • 1. Fano Scattering: Manifestation of Acoustic Phonons at the Nanoscale.
    Yogi P; Mishra S; Saxena SK; Kumar V; Kumar R
    J Phys Chem Lett; 2016 Dec; 7(24):5291-5296. PubMed ID: 27973889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The study on Raman spectra of Si nanowires].
    Tan Y; Tang YH; Pei LZ; Chen YW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):725-9. PubMed ID: 17608184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fano meets Stokes: Four-order-of-magnitude enhancement of asymmetric Brillouin light scattering spectra.
    Białek R; Vasileiadis T; Pochylski M; Graczykowski B
    Photoacoustics; 2023 Apr; 30():100478. PubMed ID: 37025113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudo-Anomalous Size-Dependent Electron-Phonon Interaction in Graded Energy Band: Solving the Fano Paradox.
    Tanwar M; Pathak DK; Chaudhary A; Krylov AS; Pfnür H; Sharma A; Ahn B; Lee S; Kumar R
    J Phys Chem Lett; 2021 Mar; 12(8):2044-2051. PubMed ID: 33606540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fano-type discrete-continuum interaction in perovskites and its manifestation in Raman spectral line shapes.
    Rani C; Kumar R
    Chem Commun (Camb); 2024 Feb; 60(16):2115-2124. PubMed ID: 38284275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fano-Type Wavelength-Dependent Asymmetric Raman Line Shapes from MoS
    Tanwar M; Bansal L; Rani C; Rani S; Kandpal S; Ghosh T; Pathak DK; Sameera I; Bhatia R; Kumar R
    ACS Phys Chem Au; 2022 Sep; 2(5):417-422. PubMed ID: 36855687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fano-Liouville spectral signatures in open quantum systems.
    Finkelstein-Shapiro D; Urdaneta I; Calatayud M; Atabek O; Mujica V; Keller A
    Phys Rev Lett; 2015 Sep; 115(11):113006. PubMed ID: 26406830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum confined electron-phonon interaction in silicon nanocrystals.
    Sagar DM; Atkin JM; Palomaki PK; Neale NR; Blackburn JL; Johnson JC; Nozik AJ; Raschke MB; Beard MC
    Nano Lett; 2015 Mar; 15(3):1511-6. PubMed ID: 25626139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum interference between dark-excitons and zone-edged acoustic phonons in few-layer WS
    Tan QH; Li YM; Lai JM; Sun YJ; Zhang Z; Song F; Robert C; Marie X; Gao W; Tan PH; Zhang J
    Nat Commun; 2023 Jan; 14(1):88. PubMed ID: 36604415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification or cancellation of Fano resonance and quantum confinement induced asymmetries in Raman line-shapes.
    Saxena SK; Yogi P; Mishra S; Rai HM; Mishra V; Warshi MK; Roy S; Mondal P; Sagdeo PR; Kumar R
    Phys Chem Chem Phys; 2017 Dec; 19(47):31788-31795. PubMed ID: 29170785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles.
    Yadav HK; Gupta V; Sreenivas K; Singh SP; Sundarakannan B; Katiyar RS
    Phys Rev Lett; 2006 Aug; 97(8):085502. PubMed ID: 17026314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman scattering of InAs/AlAs quantum dot superlattices grown on (001) and (311)B GaAs surfaces.
    Milekhin A; Yeryukov N; Toropov A; Dmitriev D; Sheremet E; Zahn DR
    Nanoscale Res Lett; 2012 Aug; 7(1):476. PubMed ID: 22916827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon confinement in stressed silicon nanocluster.
    Sahoo S; Dhara S; Mahadevan S; Arora AK
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5604-7. PubMed ID: 19928273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman scattering by confined optical phonons in Si and Ge nanostructures.
    Alfaro P; Cisneros R; Bizarro M; Cruz-Irisson M; Wang C
    Nanoscale; 2011 Mar; 3(3):1246-51. PubMed ID: 21270988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-domain study of nonthermal gigahertz phonons reveals Fano coupling to charge carriers.
    Vasileiadis T; Zhang H; Wang H; Bonn M; Fytas G; Graczykowski B
    Sci Adv; 2020 Dec; 6(51):. PubMed ID: 33355135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-phonon processes of intraband relaxation in the terahertz regime in quantum dots.
    Wang ZW; Li SS
    J Phys Condens Matter; 2011 Jun; 23(22):225303. PubMed ID: 21593554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nonlinear Fano effect.
    Kroner M; Govorov AO; Remi S; Biedermann B; Seidl S; Badolato A; Petroff PM; Zhang W; Barbour R; Gerardot BD; Warburton RJ; Karrai K
    Nature; 2008 Jan; 451(7176):311-4. PubMed ID: 18202652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fano resonance between coherent acoustic phonon oscillations and electronic states near the bandgap of photoexcited GaAs.
    Vinod M; Raghavan G; Sivasubramanian V
    Sci Rep; 2018 Dec; 8(1):17706. PubMed ID: 30532007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fano interference in quantum resonances from angle-resolved elastic scattering.
    Paliwal P; Blech A; Koch CP; Narevicius E
    Nat Commun; 2021 Dec; 12(1):7249. PubMed ID: 34903758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of induced longitudinal and shear acoustic phonons by Brillouin scattering.
    Yoshida T; Matsukawa M; Yanagitani T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1255-60. PubMed ID: 21693407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.