These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27973889)

  • 21. Directional Fano resonance in a silicon nanosphere dimer.
    Yan J; Liu P; Lin Z; Wang H; Chen H; Wang C; Yang G
    ACS Nano; 2015 Mar; 9(3):2968-80. PubMed ID: 25683067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dispersion of the surface phonons in semiconductor/topological insulator Si/Bi
    Trzaskowska A; Mielcarek S; Wiesner M; Lombardi F; Mroz B
    Ultrasonics; 2021 Dec; 117():106526. PubMed ID: 34303926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal diffuse scattering as a probe of large-wave-vector phonons in silicon nanostructures.
    Gopalakrishnan G; Holt MV; McElhinny KM; Spalenka JW; Czaplewski DA; Schülli TU; Evans PG
    Phys Rev Lett; 2013 May; 110(20):205503. PubMed ID: 25167426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable photoluminescence from nc-Si/a-SiNx:H quantum dot thin films prepared by ICP-CVD.
    Sain B; Das D
    Phys Chem Chem Phys; 2013 Mar; 15(11):3881-8. PubMed ID: 23407687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Raman-like light scattering from acoustic phonons in photonic crystal fiber.
    Dainese P; Russell PS; Wiederhecker GS; Joly N; Fragnito HL; Laude V; Khelif A
    Opt Express; 2006 May; 14(9):4141-50. PubMed ID: 19516563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-state double-continuum Fano resonance at the Si(100) surface.
    Eickhoff C; Teichmann M; Weinelt M
    Phys Rev Lett; 2011 Oct; 107(17):176804. PubMed ID: 22107556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lifetimes of confined acoustic phonons in ultrathin silicon membranes.
    Cuffe J; Ristow O; Chávez E; Shchepetov A; Chapuis PO; Alzina F; Hettich M; Prunnila M; Ahopelto J; Dekorsy T; Sotomayor Torres CM
    Phys Rev Lett; 2013 Mar; 110(9):095503. PubMed ID: 23496722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The interaction of organic adsorbate vibrations with substrate lattice waves in methyl-Si(111)-(1 × 1).
    Brown RD; Hund ZM; Campi D; O'Leary LE; Lewis NS; Bernasconi M; Benedek G; Sibener SJ
    J Chem Phys; 2014 Jul; 141(2):024702. PubMed ID: 25028033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence of the Fano resonance in a temperature dependent Raman study of CaCu3Ti4O12 and SrCu3Ti4O12.
    Mishra DK; Sathe VG
    J Phys Condens Matter; 2012 Jun; 24(25):252202. PubMed ID: 22635438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of dimensionality on the excitation wavelength dependence of the Fano-Raman line-shape: a brief review.
    Tanwar M; Kumar R
    Nanoscale; 2024 Mar; 16(13):6429-6441. PubMed ID: 38470369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy dispersive anti-anharmonic effect in a Fano intervened semiconductor: revealed through temperature and wavelength-dependent Raman scattering.
    Rani C; Kandpal S; Ghosh T; Bansal L; Tanwar M; Kumar R
    Phys Chem Chem Phys; 2023 Jan; 25(3):1627-1631. PubMed ID: 36601877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental evidence of Fano resonances in nanomechanical resonators.
    Stassi S; Chiadò A; Calafiore G; Palmara G; Cabrini S; Ricciardi C
    Sci Rep; 2017 Apr; 7(1):1065. PubMed ID: 28432315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discrete states and carrier-phonon scattering in quantum dot population dynamics.
    Man MT; Lee HS
    Sci Rep; 2015 Feb; 5():8267. PubMed ID: 25652600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fano resonance between Mie and Bragg scattering in photonic crystals.
    Rybin MV; Khanikaev AB; Inoue M; Samusev KB; Steel MJ; Yushin G; Limonov MF
    Phys Rev Lett; 2009 Jul; 103(2):023901. PubMed ID: 19659204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phononic and photonic properties of shape-engineered silicon nanoscale pillar arrays.
    Huang CYT; Kargar F; Debnath T; Debnath B; Valentin MD; Synowicki R; Schoeche S; Lake RK; Balandin AA
    Nanotechnology; 2020 Jul; 31(30):30LT01. PubMed ID: 32240999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fano resonances in the midinfrared spectra of single-walled carbon nanotubes.
    Lapointe F; Gaufrès E; Tremblay I; Tang NY; Martel R; Desjardins P
    Phys Rev Lett; 2012 Aug; 109(9):097402. PubMed ID: 23002881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thickness-Dependent Phonon Renormalization and Enhanced Raman Scattering in Ultrathin Silicon Nanomembranes.
    Lee S; Kim K; Dhakal KP; Kim H; Yun WS; Lee J; Cheong H; Ahn JH
    Nano Lett; 2017 Dec; 17(12):7744-7750. PubMed ID: 29136472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spherical growth and surface-quasifree vibrations of Si nanocrystallites in Er-doped Si nanostructures.
    Wu XL; Mei YF; Siu GG; Wong KL; Moulding K; Stokes MJ; Fu CL; Bao XM
    Phys Rev Lett; 2001 Apr; 86(14):3000-3. PubMed ID: 11290092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designing of strongly confined short-wave Brillouin phonons in silicon waveguide periodic lattices.
    Zurita RO; Wiederhecker GS; Mayer Alegre TP
    Opt Express; 2021 Jan; 29(2):1736-1748. PubMed ID: 33726381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantifying the Short-Range Order in Amorphous Silicon by Raman Scattering.
    Yogi P; Tanwar M; Saxena SK; Mishra S; Pathak DK; Chaudhary A; Sagdeo PR; Kumar R
    Anal Chem; 2018 Jul; 90(13):8123-8129. PubMed ID: 29889501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.