BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27974044)

  • 1. Effects of protonation on the hydrolysis of triphosphate in vacuum and the implications for catalysis by nucleotide hydrolyzing enzymes.
    Kiani FA; Fischer S
    BMC Biochem; 2016 Jun; 17(1):12. PubMed ID: 27974044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors.
    Hassan HA; Rani S; Fatima T; Kiani FA; Fischer S
    Biophys Chem; 2017 Nov; 230():27-35. PubMed ID: 28941815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of the ADP/metaphosphate intermediate during ATP hydrolysis in pre-power stroke myosin: quantitative anatomy of an enzyme.
    Kiani FA; Fischer S
    J Biol Chem; 2013 Dec; 288(49):35569-80. PubMed ID: 24165121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors.
    Kiani FA; Fischer S
    Phys Chem Chem Phys; 2016 Jul; 18(30):20219-33. PubMed ID: 27296627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic strategy used by the myosin motor to hydrolyze ATP.
    Kiani FA; Fischer S
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2947-56. PubMed ID: 25006262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrolysis of 6-phosphogluconolactone in the second step of pentose phosphate pathway occurs via a two-water mechanism.
    Fatima T; Rani S; Fischer S; Efferth T; Kiani FA
    Biophys Chem; 2018 Sep; 240():98-106. PubMed ID: 30014892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation and Plasticity of Catalysis in Enzymes: Insights from Analysis of Mechanochemical Coupling in Myosin.
    Lu X; Ovchinnikov V; Demapan D; Roston D; Cui Q
    Biochemistry; 2017 Mar; 56(10):1482-1497. PubMed ID: 28225609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic characterization of the GTPase activity of phage lambda terminase: evidence for communication between the two "NTPase" catalytic sites of the enzyme.
    Woods L; Catalano CE
    Biochemistry; 1999 Nov; 38(44):14624-30. PubMed ID: 10545186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of ATP hydrolysis in F1-ATPase revealed by molecular simulations and single-molecule observations.
    Hayashi S; Ueno H; Shaikh AR; Umemura M; Kamiya M; Ito Y; Ikeguchi M; Komoriya Y; Iino R; Noji H
    J Am Chem Soc; 2012 May; 134(20):8447-54. PubMed ID: 22548707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of diadenosine polyphosphates. Exploration of an additional role of Mycobacterium smegmatis MutT1.
    Arif SM; Varshney U; Vijayan M
    J Struct Biol; 2017 Sep; 199(3):165-176. PubMed ID: 28705712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism and Inhibition of Human Methionine Adenosyltransferase 2A.
    Niland CN; Ghosh A; Cahill SM; Schramm VL
    Biochemistry; 2021 Mar; 60(10):791-801. PubMed ID: 33656855
    [No Abstract]   [Full Text] [Related]  

  • 12. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics.
    Iino R; Noji H
    IUBMB Life; 2013 Mar; 65(3):238-46. PubMed ID: 23341301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations.
    Rosta E; Nowotny M; Yang W; Hummer G
    J Am Chem Soc; 2011 Jun; 133(23):8934-41. PubMed ID: 21539371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function.
    Updegrove TB; Harke J; Anantharaman V; Yang J; Gopalan N; Wu D; Piszczek G; Stevenson DM; Amador-Noguez D; Wang JD; Aravind L; Ramamurthi KS
    Elife; 2021 Mar; 10():. PubMed ID: 33704064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical studies of the ATP hydrolysis mechanism of myosin.
    Okimoto N; Yamanaka K; Ueno J; Hata M; Hoshino T; Tsuda M
    Biophys J; 2001 Nov; 81(5):2786-94. PubMed ID: 11606291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies of the catalytic mechanisms of two chorismatases: CH-fkbo and CH-Hyg5.
    Dong L; Liu Y
    Proteins; 2017 Jun; 85(6):1146-1158. PubMed ID: 28263400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the myosin catalyzed hydrolysis of ATP as rationalized by molecular modeling.
    Grigorenko BL; Rogov AV; Topol IA; Burt SK; Martinez HM; Nemukhin AV
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7057-61. PubMed ID: 17438284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity.
    Kozlova MI; Shalaeva DN; Dibrova DV; Mulkidjanian AY
    Biomolecules; 2022 Sep; 12(10):. PubMed ID: 36291556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the myosin catalysis of ATP hydrolysis.
    Onishi H; Mochizuki N; Morales MF
    Biochemistry; 2004 Apr; 43(13):3757-63. PubMed ID: 15049682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.