These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27974244)

  • 1. A new method to analyze protein sequence similarity using Dynamic Time Warping.
    Hou W; Pan Q; Peng Q; He M
    Genomics; 2017 Mar; 109(2):123-130. PubMed ID: 27974244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A measure of DNA sequence similarity by Fourier Transform with applications on hierarchical clustering.
    Yin C; Chen Y; Yau SS
    J Theor Biol; 2014 Oct; 359():18-28. PubMed ID: 24911780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method to analyze the similarity of biological sequences.
    Huang W; Guo Y; Zhang J
    J Biomol Struct Dyn; 2009 Apr; 26(5):599-608. PubMed ID: 19236110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved model for whole genome phylogenetic analysis by Fourier transform.
    Yin C; Yau SS
    J Theor Biol; 2015 Oct; 382():99-110. PubMed ID: 26151589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fractal Dimension and Wavelet Transform Based Method for Protein Sequence Similarity Analysis.
    Yang L; Tang YY; Lu Y; Luo H
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):348-59. PubMed ID: 26357222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive alignment of genomic signals by multiple dynamic time warping.
    Skutkova H; Vitek M; Sedlar K; Provaznik I
    J Theor Biol; 2015 Nov; 385():20-30. PubMed ID: 26300069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphical Representation and Similarity Analysis of Protein Sequences Based on Fractal Interpolation.
    Hu H; Li Z; Dong H; Zhou T
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(1):182-192. PubMed ID: 26731773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.
    Zhao J; Wang J; Hua W; Ouyang P
    Mol Cell Probes; 2015 Dec; 29(6):396-407. PubMed ID: 26325081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for similarity analysis and protein sub-cellular localization prediction.
    Liao B; Liao B; Sun X; Zeng Q
    Bioinformatics; 2010 Nov; 26(21):2678-83. PubMed ID: 20826879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GLProbs: Aligning Multiple Sequences Adaptively.
    Ye Y; Cheung DW; Wang Y; Yiu SM; Zhan Q; Lam TW; Ting HF
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):67-78. PubMed ID: 26357079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. REPETITA: detection and discrimination of the periodicity of protein solenoid repeats by discrete Fourier transform.
    Marsella L; Sirocco F; Trovato A; Seno F; Tosatto SC
    Bioinformatics; 2009 Jun; 25(12):i289-95. PubMed ID: 19478001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of protein dendrograms based on amino acid indices and Discrete Fourier Transform.
    Chrysostomou C; Seker H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():816-9. PubMed ID: 25570084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detailed protein sequence alignment based on Spectral Similarity Score (SSS).
    Gupta K; Thomas D; Vidya SV; Venkatesh KV; Ramakumar S
    BMC Bioinformatics; 2005 Apr; 6():105. PubMed ID: 15850477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new similarity measure among protein sequences.
    Wu KP; Lin HN; Sung TY; Hsu WL
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():347-52. PubMed ID: 16452810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid similarity search of proteins using alignments of domain arrangements.
    Terrapon N; Weiner J; Grath S; Moore AD; Bornberg-Bauer E
    Bioinformatics; 2014 Jan; 30(2):274-81. PubMed ID: 23828785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing Alignment Time Complexity of Ultra-Large Sets of Sequences.
    Rubio-Largo Á; Vanneschi L; Castelli M; Vega-Rodríguez MA
    J Comput Biol; 2017 Nov; 24(11):1144-1154. PubMed ID: 28686466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.
    Hong C; Tewfik AH
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):570-82. PubMed ID: 19875856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping sequence to feature vector using numerical representation of codons targeted to amino acids for alignment-free sequence analysis.
    Das JK; Sengupta A; Choudhury PP; Roy S
    Gene; 2021 Jan; 766():145096. PubMed ID: 32919006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust sequence alignment using evolutionary rates coupled with an amino acid substitution matrix.
    Ndhlovu A; Hazelhurst S; Durand PM
    BMC Bioinformatics; 2015 Aug; 16():255. PubMed ID: 26269100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.