These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 27974534)

  • 1. How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust.
    Gemmell BJ; Fogerson SM; Costello JH; Morgan JR; Dabiri JO; Colin SP
    J Exp Biol; 2016 Dec; 219(Pt 24):3884-3895. PubMed ID: 27974534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thrust generation during steady swimming and acceleration from rest in anguilliform swimmers.
    Du Clos KT; Dabiri JO; Costello JH; Colin SP; Morgan JR; Fogerson SM; Gemmell BJ
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31740507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the swimming kinematics of lampreys Petromyzon marinus across changes in viscosity.
    Tytell ED; Cooper LO; Lin YL; Reis PM
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 37042277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of suction thrust in the metachronal paddles of swimming invertebrates.
    Colin SP; Costello JH; Sutherland KR; Gemmell BJ; Dabiri JO; Du Clos KT
    Sci Rep; 2020 Oct; 10(1):17790. PubMed ID: 33082456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suction-based propulsion as a basis for efficient animal swimming.
    Gemmell BJ; Colin SP; Costello JH; Dabiri JO
    Nat Commun; 2015 Nov; 6():8790. PubMed ID: 26529342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wake structures behind a swimming robotic lamprey with a passively flexible tail.
    Leftwich MC; Tytell ED; Cohen AH; Smits AJ
    J Exp Biol; 2012 Feb; 215(Pt 3):416-25. PubMed ID: 22246250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydrodynamics of eel swimming: I. Wake structure.
    Tytell ED; Lauder GV
    J Exp Biol; 2004 May; 207(Pt 11):1825-41. PubMed ID: 15107438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similarities and Differences for Swimming in Larval and Adult Lampreys.
    McClellan AD; Pale T; Messina JA; Buso S; Shebib A
    Physiol Biochem Zool; 2016; 89(4):294-312. PubMed ID: 27327180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airfoil-like mechanics generate thrust on the anterior body of swimming fishes.
    Lucas KN; Lauder GV; Tytell ED
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10585-10592. PubMed ID: 32341168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How the body contributes to the wake in undulatory fish swimming: flow fields of a swimming eel (Anguilla anguilla).
    Müller UK; Smit J; Stamhuis EJ; Videler JJ
    J Exp Biol; 2001 Aug; 204(Pt 16):2751-62. PubMed ID: 11683431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics and hydrodynamics analysis of swimming anurans reveals striking inter-specific differences in the mechanism for producing thrust.
    Richards CT
    J Exp Biol; 2010 Feb; 213(4):621-34. PubMed ID: 20118313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swimming kinematics and performance of spinal transected lampreys with different levels of axon regeneration.
    Fies J; Gemmell BJ; Fogerson SM; Morgan JR; Tytell ED; Colin SP
    J Exp Biol; 2021 Nov; 224(21):. PubMed ID: 34632494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.
    Müller UK; van den Boogaart JG; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):196-205. PubMed ID: 18165247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata.
    Tytell ED
    Proc Biol Sci; 2004 Dec; 271(1557):2535-40. PubMed ID: 15615678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of curvature feedback in the energetics and dynamics of lamprey swimming: A closed-loop model.
    Hamlet CL; Hoffman KA; Tytell ED; Fauci LJ
    PLoS Comput Biol; 2018 Aug; 14(8):e1006324. PubMed ID: 30118476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between muscle activation, body curvature and the water in the swimming lamprey.
    Williams TL; Bowtell G; Carling JC; Sigvardt KA; Curtin NA
    Symp Soc Exp Biol; 1995; 49():49-59. PubMed ID: 8571235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach.
    Richards CT
    J Exp Biol; 2008 Oct; 211(Pt 19):3181-94. PubMed ID: 18805818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.