These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27974534)

  • 21. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.
    Babu MN; Mallikarjuna JM; Krishnankutty P
    Robotics Biomim; 2016; 3():3. PubMed ID: 27077022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.
    Tytell ED; Hsu CY; Williams TL; Cohen AH; Fauci LJ
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19832-7. PubMed ID: 21037110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fish without Tail Fins-Exploring the Function of Tail Morphology of the First Vertebrates.
    Rival DE; Yang W; Caron JB
    Integr Comp Biol; 2021 Jul; 61(1):37-49. PubMed ID: 33690846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Role of the Tail or Lack Thereof in the Evolution of Tetrapod Aquatic Propulsion.
    Fish FE; Rybczynski N; Lauder GV; Duff CM
    Integr Comp Biol; 2021 Sep; 61(2):398-413. PubMed ID: 33881525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The hydrodynamics of eel swimming II. Effect of swimming speed.
    Tytell ED
    J Exp Biol; 2004 Sep; 207(Pt 19):3265-79. PubMed ID: 15326203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Different forms of locomotion in the spinal lamprey.
    Hsu LJ; Orlovsky GN; Zelenin PV
    Eur J Neurosci; 2014 Jun; 39(12):2037-49. PubMed ID: 24641591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial and temporal patterns of water flow generated by suction-feeding bluegill sunfish Lepomis macrochirus resolved by Particle Image Velocimetry.
    Day SW; Higham TE; Cheer AY; Wainwright PC
    J Exp Biol; 2005 Jul; 208(Pt 14):2661-71. PubMed ID: 16000536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance variation due to stiffness in a tuna-inspired flexible foil model.
    Rosic MN; Thornycroft PJ; Feilich KL; Lucas KN; Lauder GV
    Bioinspir Biomim; 2017 Jan; 12(1):016011. PubMed ID: 28094239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model.
    Wolf Z; Jusufi A; Vogt DM; Lauder GV
    Bioinspir Biomim; 2020 Jun; 15(4):046008. PubMed ID: 32330908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrodynamics of surface swimming in leopard frogs (Rana pipiens).
    Johansson LC; Lauder GV
    J Exp Biol; 2004 Oct; 207(Pt 22):3945-58. PubMed ID: 15472025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An elastic rod model for anguilliform swimming.
    McMillen T; Holmes P
    J Math Biol; 2006 Nov; 53(5):843-86. PubMed ID: 16972099
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements.
    Dabiri JO; Bose S; Gemmell BJ; Colin SP; Costello JH
    J Exp Biol; 2014 Feb; 217(Pt 3):331-6. PubMed ID: 24115059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuna robotics: hydrodynamics of rapid linear accelerations.
    Thandiackal R; White CH; Bart-Smith H; Lauder GV
    Proc Biol Sci; 2021 Feb; 288(1945):20202726. PubMed ID: 33593180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The pattern of motor coordination underlying the roll in the lamprey.
    Zelenin PV; Grillner S; Orlovsky GN; Deliagina TG
    J Exp Biol; 2003 Aug; 206(Pt 15):2557-66. PubMed ID: 12819263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulations of optimized anguilliform swimming.
    Kern S; Koumoutsakos P
    J Exp Biol; 2006 Dec; 209(Pt 24):4841-57. PubMed ID: 17142673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Body dynamics and hydrodynamics of swimming fish larvae: a computational study.
    Li G; Müller UK; van Leeuwen JL; Liu H
    J Exp Biol; 2012 Nov; 215(Pt 22):4015-33. PubMed ID: 23100489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Routine turning maneuvers of koi carp Cyprinus carpio koi: effects of turning rate on kinematics and hydrodynamics.
    Wu G; Yang Y; Zeng L
    J Exp Biol; 2007 Dec; 210(Pt 24):4379-89. PubMed ID: 18055627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.