BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 27974723)

  • 21. Editing the Epigenome to Tackle Brain Disorders.
    Liu XS; Jaenisch R
    Trends Neurosci; 2019 Dec; 42(12):861-870. PubMed ID: 31706628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Technologies and Computational Analysis Strategies for CRISPR Applications.
    Clement K; Hsu JY; Canver MC; Joung JK; Pinello L
    Mol Cell; 2020 Jul; 79(1):11-29. PubMed ID: 32619467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Editing the epigenome: technologies for programmable transcription and epigenetic modulation.
    Thakore PI; Black JB; Hilton IB; Gersbach CA
    Nat Methods; 2016 Feb; 13(2):127-37. PubMed ID: 26820547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cas System: The Current and Emerging Translational Landscape.
    Bhokisham N; Laudermilch E; Traeger LL; Bonilla TD; Ruiz-Estevez M; Becker JR
    Cells; 2023 Apr; 12(8):. PubMed ID: 37190012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences.
    Perera BPU; Morgan RK; Polemi KM; Sala-Hamrick KE; Svoboda LK; Dolinoy DC
    Curr Environ Health Rep; 2022 Dec; 9(4):650-660. PubMed ID: 35917009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenome Editing: State of the Art, Concepts, and Perspectives.
    Kungulovski G; Jeltsch A
    Trends Genet; 2016 Feb; 32(2):101-113. PubMed ID: 26732754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR: From Prokaryotic Immune Systems to Plant Genome Editing Tools.
    Bandyopadhyay A; Mazumdar S; Yin X; Quick WP
    Adv Exp Med Biol; 2017; 1016():101-120. PubMed ID: 29130156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR technologies for precise epigenome editing.
    Nakamura M; Gao Y; Dominguez AA; Qi LS
    Nat Cell Biol; 2021 Jan; 23(1):11-22. PubMed ID: 33420494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenome editing in cancer: Advances and challenges for potential therapeutic options.
    Lee SW; Frankston CM; Kim J
    Int Rev Cell Mol Biol; 2024; 383():191-230. PubMed ID: 38359969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene editing tools: state-of-the-art and the road ahead for the model and non-model fishes.
    Barman HK; Rasal KD; Chakrapani V; Ninawe AS; Vengayil DT; Asrafuzzaman S; Sundaray JK; Jayasankar P
    Transgenic Res; 2017 Oct; 26(5):577-589. PubMed ID: 28681201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cancer induction and suppression with transcriptional control and epigenome editing technologies.
    Nakade S; Yamamoto T; Sakuma T
    J Hum Genet; 2018 Feb; 63(2):187-194. PubMed ID: 29215091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Current advances and future prospects of genome editing technology in the field of biomedicine.].
    Sakuma T
    Clin Calcium; 2017; 27(12):1788-1793. PubMed ID: 29179174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Progress in Genome Editing Approaches for Inherited Cardiovascular Diseases.
    Kaur B; Perea-Gil I; Karakikes I
    Curr Cardiol Rep; 2018 Jun; 20(7):58. PubMed ID: 29860642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Allele-Specific Epigenome Editing.
    Bashtrykov P; Jeltsch A
    Methods Mol Biol; 2018; 1767():137-146. PubMed ID: 29524132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Research Progress on Application of CRISPR/Cas Genome Editing Technology in Hematological Diseases -Review].
    Xin LY; Liu AF; Zhong SS; Chen YJ
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2016 Aug; 24(4):1284-8. PubMed ID: 27531817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment.
    Chen Y; Luo X; Kang R; Cui K; Ou J; Zhang X; Liang P
    J Genet Genomics; 2024 Feb; 51(2):159-183. PubMed ID: 37516348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges.
    Ueda J; Yamazaki T; Funakoshi H
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental history and application of CRISPR in human disease.
    Liang P; Zhang X; Chen Y; Huang J
    J Gene Med; 2017 Jun; 19(6-7):. PubMed ID: 28623876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites.
    Leitão AL; Costa MC; Enguita FJ
    J Biotechnol; 2017 Jan; 241():50-60. PubMed ID: 27845165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From Reductionism to Holism: Toward a More Complete View of Development Through Genome Engineering.
    Delker RK; Mann RS
    Adv Exp Med Biol; 2017; 1016():45-74. PubMed ID: 29130153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.