BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27974729)

  • 1. Secondary Metabolites Production and Plant Growth Promotion by
    Shahid I; Rizwan M; Baig DN; Saleem RS; Malik KA; Mehnaz S
    J Microbiol Biotechnol; 2017 Mar; 27(3):480-491. PubMed ID: 27974729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenazine and 1-Undecene Producing
    Tagele SB; Lee HG; Kim SW; Lee YS
    J Microbiol Biotechnol; 2019 Jan; 29(1):66-78. PubMed ID: 30415529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities.
    Jain R; Pandey A
    Microbiol Res; 2016 Sep; 190():63-71. PubMed ID: 27394000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Quantification of Secondary Metabolites by LC-MS from Plant-associated
    Shahid I; Rizwan M; Mehnaz S
    Bio Protoc; 2018 Jan; 8(2):e2702. PubMed ID: 34179247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo.
    Raio A; Reveglia P; Puopolo G; Cimmino A; Danti R; Evidente A
    Microbiol Res; 2017 Jun; 199():49-56. PubMed ID: 28454709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine.
    Liu K; Hu H; Wang W; Zhang X
    Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity.
    Li J; Yang Y; Dubern JF; Li H; Halliday N; Chernin L; Gao K; Cámara M; Liu X
    PLoS One; 2015; 10(9):e0137553. PubMed ID: 26379125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a phenazine and hexanoyl homoserine lactone producing Pseudomonas aurantiaca strain PB-St2, isolated from sugarcane stem.
    Mehnaz S; Baig DN; Jamil F; Weselowski B; Lazarovits G
    J Microbiol Biotechnol; 2009 Dec; 19(12):1688-94. PubMed ID: 20075638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of Pseudomonas chlororaphis subsp. aurantiaca Strain Pcho10 as a Biocontrol Agent Against Fusarium graminearum.
    Hu W; Gao Q; Hamada MS; Dawood DH; Zheng J; Chen Y; Ma Z
    Phytopathology; 2014 Dec; 104(12):1289-97. PubMed ID: 24941327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Systematic Investigation of the Quorum Sensing System of the Biocontrol Strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 Unveils aurI to Be a Biosynthetic Origin for 3-Oxo-Homoserine Lactones.
    Bauer JS; Hauck N; Christof L; Mehnaz S; Gust B; Gross H
    PLoS One; 2016; 11(11):e0167002. PubMed ID: 27861617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling of antimicrobial metabolites of plant growth promoting
    Shahid I; Han J; Hardie D; Baig DN; Malik KA; Borchers CH; Mehnaz S
    3 Biotech; 2021 Feb; 11(2):48. PubMed ID: 33489669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites.
    Shen X; Wang Z; Huang X; Hu H; Wang W; Zhang X
    BMC Genomics; 2017 Sep; 18(1):715. PubMed ID: 28893188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot.
    Liu F; Yang S; Xu F; Zhang Z; Lu Y; Zhang J; Wang G
    BMC Microbiol; 2022 Jan; 22(1):9. PubMed ID: 34986788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete Genome Sequence of Pseudomonas chlororaphis subsp. aurantiaca Reveals a Triplicate Quorum-Sensing Mechanism for Regulation of Phenazine Production.
    Morohoshi T; Yamaguchi T; Xie X; Wang WZ; Takeuchi K; Someya N
    Microbes Environ; 2017 Mar; 32(1):47-53. PubMed ID: 28239068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenazine antibiotic production and antifungal activity are regulated by multiple quorum-sensing systems in Pseudomonas chlororaphis subsp. aurantiaca StFRB508.
    Morohoshi T; Wang WZ; Suto T; Saito Y; Ito S; Someya N; Ikeda T
    J Biosci Bioeng; 2013 Nov; 116(5):580-4. PubMed ID: 23727350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin.
    Ramette A; Frapolli M; Fischer-Le Saux M; Gruffaz C; Meyer JM; Défago G; Sutra L; Moënne-Loccoz Y
    Syst Appl Microbiol; 2011 May; 34(3):180-8. PubMed ID: 21392918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lahorenoic acids A-C, ortho-dialkyl-substituted aromatic acids from the biocontrol strain Pseudomonas aurantiaca PB-St2.
    Mehnaz S; Saleem RS; Yameen B; Pianet I; Schnakenburg G; Pietraszkiewicz H; Valeriote F; Josten M; Sahl HG; Franzblau SG; Gross H
    J Nat Prod; 2013 Feb; 76(2):135-41. PubMed ID: 23402329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and Engineering of
    Liu WH; Yue SJ; Feng TT; Li S; Huang P; Hu HB; Wang W; Zhang XH
    J Agric Food Chem; 2021 Apr; 69(16):4778-4784. PubMed ID: 33848158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs.
    Peng H; Tan J; Bilal M; Wang W; Hu H; Zhang X
    World J Microbiol Biotechnol; 2018 Aug; 34(9):129. PubMed ID: 30094643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66.
    Guo S; Wang Y; Dai B; Wang W; Hu H; Huang X; Zhang X
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7165-7175. PubMed ID: 28871340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.