These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27975231)

  • 41. Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics.
    Brusniak MY; Bodenmiller B; Campbell D; Cooke K; Eddes J; Garbutt A; Lau H; Letarte S; Mueller LN; Sharma V; Vitek O; Zhang N; Aebersold R; Watts JD
    BMC Bioinformatics; 2008 Dec; 9():542. PubMed ID: 19087345
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perspectives of targeted mass spectrometry for protein biomarker verification.
    Hüttenhain R; Malmström J; Picotti P; Aebersold R
    Curr Opin Chem Biol; 2009 Dec; 13(5-6):518-25. PubMed ID: 19818677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioinformatic challenges in targeted proteomics.
    Reker D; Malmström L
    J Proteome Res; 2012 Sep; 11(9):4393-402. PubMed ID: 22866949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of biomarkers from mass spectrometry data using a "common" peak approach.
    Fushiki T; Fujisawa H; Eguchi S
    BMC Bioinformatics; 2006 Jul; 7():358. PubMed ID: 16869977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioinformatics Methods to Deduce Biological Interpretation from Proteomics Data.
    Patel K; Singh M; Gowda H
    Methods Mol Biol; 2017; 1549():147-161. PubMed ID: 27975290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How do shotgun proteomics algorithms identify proteins?
    Marcotte EM
    Nat Biotechnol; 2007 Jul; 25(7):755-7. PubMed ID: 17621303
    [No Abstract]   [Full Text] [Related]  

  • 47. Important Issues in Planning a Proteomics Experiment: Statistical Considerations of Quantitative Proteomic Data.
    Schork K; Podwojski K; Turewicz M; Stephan C; Eisenacher M
    Methods Mol Biol; 2021; 2228():1-20. PubMed ID: 33950479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Perseus computational platform for comprehensive analysis of (prote)omics data.
    Tyanova S; Temu T; Sinitcyn P; Carlson A; Hein MY; Geiger T; Mann M; Cox J
    Nat Methods; 2016 Sep; 13(9):731-40. PubMed ID: 27348712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of mass spectrometry data in proteomics.
    Matthiesen R; Jensen ON
    Methods Mol Biol; 2008; 453():105-22. PubMed ID: 18712299
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elective affinities--bioinformatic analysis of proteomic mass spectrometry data.
    Li X; Pizarro A; Grosser T
    Arch Physiol Biochem; 2009 Dec; 115(5):311-9. PubMed ID: 19911947
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Top-Down Mass Spectrometry: Proteomics to Proteoforms.
    Patrie SM
    Adv Exp Med Biol; 2016; 919():171-200. PubMed ID: 27975217
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics.
    Mani DR; Abbatiello SE; Carr SA
    BMC Bioinformatics; 2012; 13 Suppl 16(Suppl 16):S9. PubMed ID: 23176545
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein identification using 2D-LC-MS/MS.
    Delahunty C; Yates JR
    Methods; 2005 Mar; 35(3):248-55. PubMed ID: 15722221
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Supervised feature selection in mass spectrometry-based proteomic profiling by blockwise boosting.
    Gertheiss J; Tutz G
    Bioinformatics; 2009 Apr; 25(8):1076-7. PubMed ID: 19233895
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioinformatics Resources for Interpreting Proteomics Mass Spectrometry Data.
    Lazar IM
    Methods Mol Biol; 2017; 1647():267-295. PubMed ID: 28809010
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrative analysis to select cancer candidate biomarkers to targeted validation.
    Kawahara R; Meirelles GV; Heberle H; Domingues RR; Granato DC; Yokoo S; Canevarolo RR; Winck FV; Ribeiro AC; Brandão TB; Filgueiras PR; Cruz KS; Barbuto JA; Poppi RJ; Minghim R; Telles GP; Fonseca FP; Fox JW; Santos-Silva AR; Coletta RD; Sherman NE; Paes Leme AF
    Oncotarget; 2015 Dec; 6(41):43635-52. PubMed ID: 26540631
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cloud-based solution to identify statistically significant MS peaks differentiating sample categories.
    Ji J; Ling J; Jiang H; Wen Q; Whitin JC; Tian L; Cohen HJ; Ling XB
    BMC Res Notes; 2013 Mar; 6():109. PubMed ID: 23522030
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational prediction models for cancer classification using mass spectrometry data.
    Pham TD
    Int J Data Min Bioinform; 2008; 2(4):405-22. PubMed ID: 19216343
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple approaches to data-mining of proteomic data based on statistical and pattern classification methods.
    Tatay JW; Feng X; Sobczak N; Jiang H; Chen CF; Kirova R; Struble C; Wang NJ; Tonellato PJ
    Proteomics; 2003 Sep; 3(9):1704-9. PubMed ID: 12973729
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Classification algorithms for phenotype prediction in genomics and proteomics.
    Ressom HW; Varghese RS; Zhang Z; Xuan J; Clarke R
    Front Biosci; 2008 Jan; 13():691-708. PubMed ID: 17981580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.