These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Identification of biomarkers from mass spectrometry data using a "common" peak approach. Fushiki T; Fujisawa H; Eguchi S BMC Bioinformatics; 2006 Jul; 7():358. PubMed ID: 16869977 [TBL] [Abstract][Full Text] [Related]
45. Bioinformatics Methods to Deduce Biological Interpretation from Proteomics Data. Patel K; Singh M; Gowda H Methods Mol Biol; 2017; 1549():147-161. PubMed ID: 27975290 [TBL] [Abstract][Full Text] [Related]
46. How do shotgun proteomics algorithms identify proteins? Marcotte EM Nat Biotechnol; 2007 Jul; 25(7):755-7. PubMed ID: 17621303 [No Abstract] [Full Text] [Related]
47. Important Issues in Planning a Proteomics Experiment: Statistical Considerations of Quantitative Proteomic Data. Schork K; Podwojski K; Turewicz M; Stephan C; Eisenacher M Methods Mol Biol; 2021; 2228():1-20. PubMed ID: 33950479 [TBL] [Abstract][Full Text] [Related]
48. The Perseus computational platform for comprehensive analysis of (prote)omics data. Tyanova S; Temu T; Sinitcyn P; Carlson A; Hein MY; Geiger T; Mann M; Cox J Nat Methods; 2016 Sep; 13(9):731-40. PubMed ID: 27348712 [TBL] [Abstract][Full Text] [Related]
49. Analysis of mass spectrometry data in proteomics. Matthiesen R; Jensen ON Methods Mol Biol; 2008; 453():105-22. PubMed ID: 18712299 [TBL] [Abstract][Full Text] [Related]
50. Elective affinities--bioinformatic analysis of proteomic mass spectrometry data. Li X; Pizarro A; Grosser T Arch Physiol Biochem; 2009 Dec; 115(5):311-9. PubMed ID: 19911947 [TBL] [Abstract][Full Text] [Related]
51. Top-Down Mass Spectrometry: Proteomics to Proteoforms. Patrie SM Adv Exp Med Biol; 2016; 919():171-200. PubMed ID: 27975217 [TBL] [Abstract][Full Text] [Related]
52. Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics. Mani DR; Abbatiello SE; Carr SA BMC Bioinformatics; 2012; 13 Suppl 16(Suppl 16):S9. PubMed ID: 23176545 [TBL] [Abstract][Full Text] [Related]
53. Protein identification using 2D-LC-MS/MS. Delahunty C; Yates JR Methods; 2005 Mar; 35(3):248-55. PubMed ID: 15722221 [TBL] [Abstract][Full Text] [Related]
54. Supervised feature selection in mass spectrometry-based proteomic profiling by blockwise boosting. Gertheiss J; Tutz G Bioinformatics; 2009 Apr; 25(8):1076-7. PubMed ID: 19233895 [TBL] [Abstract][Full Text] [Related]
55. Bioinformatics Resources for Interpreting Proteomics Mass Spectrometry Data. Lazar IM Methods Mol Biol; 2017; 1647():267-295. PubMed ID: 28809010 [TBL] [Abstract][Full Text] [Related]
57. Cloud-based solution to identify statistically significant MS peaks differentiating sample categories. Ji J; Ling J; Jiang H; Wen Q; Whitin JC; Tian L; Cohen HJ; Ling XB BMC Res Notes; 2013 Mar; 6():109. PubMed ID: 23522030 [TBL] [Abstract][Full Text] [Related]
58. Computational prediction models for cancer classification using mass spectrometry data. Pham TD Int J Data Min Bioinform; 2008; 2(4):405-22. PubMed ID: 19216343 [TBL] [Abstract][Full Text] [Related]
59. Multiple approaches to data-mining of proteomic data based on statistical and pattern classification methods. Tatay JW; Feng X; Sobczak N; Jiang H; Chen CF; Kirova R; Struble C; Wang NJ; Tonellato PJ Proteomics; 2003 Sep; 3(9):1704-9. PubMed ID: 12973729 [TBL] [Abstract][Full Text] [Related]
60. Classification algorithms for phenotype prediction in genomics and proteomics. Ressom HW; Varghese RS; Zhang Z; Xuan J; Clarke R Front Biosci; 2008 Jan; 13():691-708. PubMed ID: 17981580 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]