These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Molecular dynamics simulation of the phosphorylation-induced conformational changes of a tau peptide fragment. Lyons AJ; Gandhi NS; Mancera RL Proteins; 2014 Sep; 82(9):1907-23. PubMed ID: 24577753 [TBL] [Abstract][Full Text] [Related]
4. Regulation and aggregation of intrinsically disordered peptides. Levine ZA; Larini L; LaPointe NE; Feinstein SC; Shea JE Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2758-63. PubMed ID: 25691742 [TBL] [Abstract][Full Text] [Related]
5. Loss of intramolecular electrostatic interactions and limited conformational ensemble may promote self-association of cis-tau peptide. Barman A; Hamelberg D Proteins; 2015 Mar; 83(3):436-44. PubMed ID: 25524218 [TBL] [Abstract][Full Text] [Related]
6. Molecular Mechanism of Tau Misfolding and Aggregation: Insights from Molecular Dynamics Simulation. Zhong H; Liu H; Liu H Curr Med Chem; 2024; 31(20):2855-2871. PubMed ID: 37031392 [TBL] [Abstract][Full Text] [Related]
7. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos. Xue Y; Yuwen T; Zhu F; Skrynnikov NR Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671 [TBL] [Abstract][Full Text] [Related]
8. Dynamic structural determinants underlie the neurotoxicity of the N-terminal tau 26-44 peptide in Alzheimer's disease and other human tauopathies. Perini G; Ciasca G; Minelli E; Papi M; Palmieri V; Maulucci G; Nardini M; Latina V; Corsetti V; Florenzano F; Calissano P; De Spirito M; Amadoro G Int J Biol Macromol; 2019 Dec; 141():278-289. PubMed ID: 31470053 [TBL] [Abstract][Full Text] [Related]
9. Copper (Cu Jing J; Tu G; Yu H; Huang R; Ming X; Zhan H; Zhan F; Xue W Phys Chem Chem Phys; 2021 May; 23(20):11717-11726. PubMed ID: 33982037 [TBL] [Abstract][Full Text] [Related]
10. Nuclear Magnetic Resonance Spectroscopy Insights into Tau Structure in Solution: Impact of Post-translational Modifications. Danis C; Dupré E; Hanoulle X; Landrieu I; Lasorsa A; Neves JF; Schneider R; Smet-Nocca C Adv Exp Med Biol; 2019; 1184():35-45. PubMed ID: 32096026 [TBL] [Abstract][Full Text] [Related]
11. Magnetic resonance investigation of conformational responses of tau protein to specific phosphorylation. Lasorsa A; Merzougui H; Cantrelle FX; Sicoli G; Dupré E; Hanoulle X; Belle V; Smet-Nocca C; Landrieu I Biophys Chem; 2024 Feb; 305():107155. PubMed ID: 38100856 [TBL] [Abstract][Full Text] [Related]
12. Remodeling of the conformational ensemble of the repeat domain of tau by an aggregation enhancer. Akoury E; Mukrasch MD; Biernat J; Tepper K; Ozenne V; Mandelkow E; Blackledge M; Zweckstetter M Protein Sci; 2016 May; 25(5):1010-20. PubMed ID: 26940799 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation Increases Persistence Length and End-to-End Distance of a Segment of Tau Protein. Chin AF; Toptygin D; Elam WA; Schrank TP; Hilser VJ Biophys J; 2016 Jan; 110(2):362-371. PubMed ID: 26789759 [TBL] [Abstract][Full Text] [Related]
14. Structural evaluations of tau protein conformation: methodologies and approaches. Zabik NL; Imhof MM; Martic-Milne S Biochem Cell Biol; 2017 Jun; 95(3):338-349. PubMed ID: 28278386 [TBL] [Abstract][Full Text] [Related]
15. Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein. Sibille N; Huvent I; Fauquant C; Verdegem D; Amniai L; Leroy A; Wieruszeski JM; Lippens G; Landrieu I Proteins; 2012 Feb; 80(2):454-62. PubMed ID: 22072628 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and conformational properties of phosphopeptides related to the human tau protein. Du JT; Li YM; Ma QF; Qiang W; Zhao YF; Abe H; Kanazawa K; Qin XR; Aoyagi R; Ishizuka Y; Nemoto T; Nakanishi H Regul Pept; 2005 Aug; 130(1-2):48-56. PubMed ID: 15869817 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials. Hassan SA; Mehler EL; Zhang D; Weinstein H Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268 [TBL] [Abstract][Full Text] [Related]
18. Secondary structures transition of tau protein with intrinsically disordered proteins specific force field. Dan A; Chen HF Chem Biol Drug Des; 2019 Mar; 93(3):242-253. PubMed ID: 30259679 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation modulates the local conformation and self-aggregation ability of a peptide from the fourth tau microtubule-binding repeat. Du JT; Yu CH; Zhou LX; Wu WH; Lei P; Li Y; Zhao YF; Nakanishi H; Li YM FEBS J; 2007 Oct; 274(19):5012-20. PubMed ID: 17725643 [TBL] [Abstract][Full Text] [Related]
20. Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent. Periole X; Mark AE J Chem Phys; 2007 Jan; 126(1):014903. PubMed ID: 17212515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]