BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 27975247)

  • 1. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.
    Ramachandran G
    Methods Mol Biol; 2017; 1523():113-128. PubMed ID: 27975247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appraisal of role of the polyanionic inducer length on amyloid formation by 412-residue 1N4R Tau protein: A comparative study.
    Jangholi A; Ashrafi-Kooshk MR; Arab SS; Riazi G; Mokhtari F; Poorebrahim M; Mahdiuni H; Kurganov BI; Moosavi-Movahedi AA; Khodarahmi R
    Arch Biochem Biophys; 2016 Nov; 609():1-19. PubMed ID: 27638048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy.
    Tang M; McEwen GD; Wu Y; Miller CD; Zhou A
    Anal Bioanal Chem; 2013 Feb; 405(5):1577-91. PubMed ID: 23196750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Understanding the Molecular Structures and Functionalities of Biodegradable Zein-Based Materials Using Spectroscopic Techniques: A Review.
    Turasan H; Kokini JL
    Biomacromolecules; 2017 Feb; 18(2):331-354. PubMed ID: 27966349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review.
    Kurouski D; Van Duyne RP; Lednev IK
    Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative vibrational spectroscopy of intracellular tau and extracellular collagen I reveals parallels of gelation and fibrillar structure.
    Juszczak LJ
    J Biol Chem; 2004 Feb; 279(9):7395-404. PubMed ID: 14660656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of beta-lactoglobulin fibrillar assembly using atomic force microscopy, polyacrylamide gel electrophoresis, and in situ fourier transform infrared spectroscopy.
    Oboroceanu D; Wang L; Brodkorb A; Magner E; Auty MA
    J Agric Food Chem; 2010 Mar; 58(6):3667-73. PubMed ID: 20187607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV Resonance Raman explores protein structural modification upon fibrillation and ligand interaction.
    Pachetti M; D'Amico F; Pascolo L; Pucciarelli S; Gessini A; Parisse P; Vaccari L; Masciovecchio C
    Biophys J; 2021 Oct; 120(20):4575-4589. PubMed ID: 34474016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Routine femtogram-level chemical analyses using vibrational spectroscopy and self-cleaning scanning probe microscopy tips.
    Park K; Lee J; Bhargava R; King WP
    Anal Chem; 2008 May; 80(9):3221-8. PubMed ID: 18366192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Bacterial Amyloids by Nano-infrared Spectroscopy.
    Raussens V; Waeytens J
    Methods Mol Biol; 2022; 2538():117-129. PubMed ID: 35951297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy.
    vandenAkker CC; Deckert-Gaudig T; Schleeger M; Velikov KP; Deckert V; Bonn M; Koenderink GH
    Small; 2015 Sep; 11(33):4131-9. PubMed ID: 25952953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FTIR, Raman and AFM characterization of the clinically valid biochemical parameters of the thrombi in acute ischemic stroke.
    Blat A; Dybas J; Chrabaszcz K; Bulat K; Jasztal A; Kaczmarska M; Pulyk R; Popiela T; Slowik A; Malek K; Adamski MG; Marzec KM
    Sci Rep; 2019 Oct; 9(1):15475. PubMed ID: 31664105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation Condition-Structure Relationship of Mouse Prion Protein Fibrils.
    Fridmanis J; Toleikis Z; Sneideris T; Ziaunys M; Bobrovs R; Smirnovas V; Jaudzems K
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro.
    Rane JS; Bhaumik P; Panda D
    J Alzheimers Dis; 2017; 60(3):999-1014. PubMed ID: 28984591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloidogenic cross-seeding of Tau protein: Transient emergence of structural variants of fibrils.
    Nizynski B; Nieznanska H; Dec R; Boyko S; Dzwolak W; Nieznanski K
    PLoS One; 2018; 13(7):e0201182. PubMed ID: 30024984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A comparative study of malignant tissue diagnosis using ATR and microscopy FTIR spectroscopy].
    Ren Y; Xu YZ; Zhao Y; Yang LM; Li QB; Zhang YF; Weng SF; Shi JS; Xu DF; Wu JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Aug; 24(8):930-2. PubMed ID: 15766110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt-induced modulation of the pathway of amyloid fibril formation by the mouse prion protein.
    Jain S; Udgaonkar JB
    Biochemistry; 2010 Sep; 49(35):7615-24. PubMed ID: 20712298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular diseases investigated ex vivo by using Raman, FT-IR and complementary methods.
    Marzec KM; Rygula A; Gasior-Glogowska M; Kochan K; Czamara K; Bulat K; Malek K; Kaczor A; Baranska M
    Pharmacol Rep; 2015 Aug; 67(4):744-50. PubMed ID: 26321276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.