BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 27975250)

  • 21. Post-translational modifications of tau protein.
    Pevalova M; Filipcik P; Novak M; Avila J; Iqbal K
    Bratisl Lek Listy; 2006; 107(9-10):346-53. PubMed ID: 17262986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-translational modifications of tau protein in Alzheimer's disease.
    Gong CX; Liu F; Grundke-Iqbal I; Iqbal K
    J Neural Transm (Vienna); 2005 Jun; 112(6):813-38. PubMed ID: 15517432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-translational modifications of tau protein: implications for Alzheimer's disease.
    Martin L; Latypova X; Terro F
    Neurochem Int; 2011 Mar; 58(4):458-71. PubMed ID: 21215781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emerging mass spectrometry-based technologies for analyses of chromatin changes: analysis of histones and histone modifications.
    Shah B; Kozlowski RL; Han J; Borchers CH
    Methods Mol Biol; 2011; 773():259-303. PubMed ID: 21898261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Post-Translational Modifications in Tau and Their Roles in Alzheimer's Pathology.
    Kalyaanamoorthy S; Opare SK; Xu X; Ganesan A; Rao PPN
    Curr Alzheimer Res; 2024 Apr; ():. PubMed ID: 38623984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation.
    Bashyal A; Brodbelt JS
    Mass Spectrom Rev; 2024; 43(2):289-326. PubMed ID: 36165040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Involvement of Post-Translational Modifications in Alzheimer's Disease.
    Marcelli S; Corbo M; Iannuzzi F; Negri L; Blandini F; Nistico R; Feligioni M
    Curr Alzheimer Res; 2018 Feb; 15(4):313-335. PubMed ID: 28474569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Study of Posttranslational Modifications of Tau Protein by Nuclear Magnetic Resonance Spectroscopy: Phosphorylation of Tau Protein by ERK2 Recombinant Kinase and Rat Brain Extract, and Acetylation by Recombinant Creb-Binding Protein.
    Qi H; Despres C; Prabakaran S; Cantrelle FX; Chambraud B; Gunawardena J; Lippens G; Smet-Nocca C; Landrieu I
    Methods Mol Biol; 2017; 1523():179-213. PubMed ID: 27975251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current Technologies Unraveling the Significance of Post-Translational Modifications (PTMs) as Crucial Players in Neurodegeneration.
    Zafar S; Fatima SI; Schmitz M; Zerr I
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains.
    Arakhamia T; Lee CE; Carlomagno Y; Duong DM; Kundinger SR; Wang K; Williams D; DeTure M; Dickson DW; Cook CN; Seyfried NT; Petrucelli L; Fitzpatrick AWP
    Cell; 2020 Feb; 180(4):633-644.e12. PubMed ID: 32032505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation.
    Alquezar C; Arya S; Kao AW
    Front Neurol; 2020; 11():595532. PubMed ID: 33488497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative profiling of posttranslational modifications of pathological tau via sarkosyl fractionation and mass spectrometry.
    Wenger K; Viode A; Kumar M; Steen H; Steen JA
    Nat Protoc; 2024 Apr; 19(4):1235-1251. PubMed ID: 38291250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members.
    Hwang AW; Trzeciakiewicz H; Friedmann D; Yuan CX; Marmorstein R; Lee VM; Cohen TJ
    PLoS One; 2016; 11(12):e0168913. PubMed ID: 28002468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The acetylation of tau inhibits its function and promotes pathological tau aggregation.
    Cohen TJ; Guo JL; Hurtado DE; Kwong LK; Mills IP; Trojanowski JQ; Lee VM
    Nat Commun; 2011; 2():252. PubMed ID: 21427723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice.
    Morris M; Knudsen GM; Maeda S; Trinidad JC; Ioanoviciu A; Burlingame AL; Mucke L
    Nat Neurosci; 2015 Aug; 18(8):1183-9. PubMed ID: 26192747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Post-Translational Modifications on the Structure and Function of Tau Protein.
    Ye H; Han Y; Li P; Su Z; Huang Y
    J Mol Neurosci; 2022 Aug; 72(8):1557-1571. PubMed ID: 35325356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: implications for Alzheimer's disease.
    Reynolds MR; Berry RW; Binder LI
    Biochemistry; 2005 Feb; 44(5):1690-700. PubMed ID: 15683253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of Methylation and Phosphorylation Stoichiometry.
    Ayoub CA; Moore KI; Kuret J
    Methods Mol Biol; 2024; 2754():221-235. PubMed ID: 38512670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative mass spectrometry of posttranslational modifications: keys to confidence.
    Hennrich ML; Gavin AC
    Sci Signal; 2015 Apr; 8(371):re5. PubMed ID: 25852188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomics in Influenza Research: The Emerging Role of Posttranslational Modifications.
    Zhang J; Peng Q; Zhao W; Sun W; Yang J; Liu N
    J Proteome Res; 2021 Jan; 20(1):110-121. PubMed ID: 33348980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.