These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27975328)

  • 1. A Priori Intrinsic PTM Size Parameters for Predicting the Ion Mobilities of Modified Peptides.
    Kaszycki JL; Shvartsburg AA
    J Am Soc Mass Spectrom; 2017 Feb; 28(2):294-302. PubMed ID: 27975328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of Post-Translational Modifications in Peptide Mixtures via High-Resolution Differential Ion Mobility Separations Followed by Electron Transfer Dissociation.
    Baird MA; Shvartsburg AA
    J Am Soc Mass Spectrom; 2016 Dec; 27(12):2064-2070. PubMed ID: 27644938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide collision cross sections of 22 post-translational modifications.
    Will A; Oliinyk D; Bleiholder C; Meier F
    Anal Bioanal Chem; 2023 Nov; 415(27):6633-6645. PubMed ID: 37758903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Complete Histone Tail Proteoforms Using Differential Ion Mobility Spectrometry.
    Shliaha PV; Baird MA; Nielsen MM; Gorshkov V; Bowman AP; Kaszycki JL; Jensen ON; Shvartsburg AA
    Anal Chem; 2017 May; 89(10):5461-5466. PubMed ID: 28406606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FAIMS Enhances the Detection of PTM Crosstalk Sites.
    Adoni KR; Cunningham DL; Heath JK; Leney AC
    J Proteome Res; 2022 Apr; 21(4):930-939. PubMed ID: 35235327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of peptide ion mobilities via a priori calculations from intrinsic size parameters of amino acid residues.
    Shvartsburg AA; Siu KW; Clemmer DE
    J Am Soc Mass Spectrom; 2001 Aug; 12(8):885-8. PubMed ID: 11506220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and Effective Ion Mobility-Mass Spectrometry Separation of d-Amino-Acid-Containing Peptides.
    Jeanne Dit Fouque K; Garabedian A; Porter J; Baird M; Pang X; Williams TD; Li L; Shvartsburg A; Fernandez-Lima F
    Anal Chem; 2017 Nov; 89(21):11787-11794. PubMed ID: 28982001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PIPI2: Sensitive Tag-Based Database Search to Identify Peptides with Multiple Post-translational Modifications.
    Lai S; Zhao P; Zhou C; Li N; Yu W
    J Proteome Res; 2024 Jun; 23(6):1960-1969. PubMed ID: 38770571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hunting for unexpected post-translational modifications by spectral library searching with tier-wise scoring.
    Ma CW; Lam H
    J Proteome Res; 2014 May; 13(5):2262-71. PubMed ID: 24661115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Resolution Ion Mobility Separations of Isomeric Glycoforms with Variations on the Peptide and Glycan Levels.
    Pathak P; Baird MA; Shvartsburg AA
    J Am Soc Mass Spectrom; 2020 Jul; 31(7):1603-1609. PubMed ID: 32501708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unbiased detection of posttranslational modifications using mass spectrometry.
    Savitski MF; Savitski MM
    Methods Mol Biol; 2010; 673():203-10. PubMed ID: 20835800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of Isobaric Mono- and Dimethylated RGG-Repeat Peptides by Differential Ion Mobility-Mass Spectrometry.
    Winter DL; Mastellone J; Kabir KMM; Wilkins MR; Donald WA
    Anal Chem; 2019 Sep; 91(18):11827-11833. PubMed ID: 31429255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signatures of Mechanically Interlocked Topology of Lasso Peptides by Ion Mobility-Mass Spectrometry: Lessons from a Collection of Representatives.
    Fouque KJD; Lavanant H; Zirah S; Hegemann JD; Zimmermann M; Marahiel MA; Rebuffat S; Afonso C
    J Am Soc Mass Spectrom; 2017 Feb; 28(2):315-322. PubMed ID: 27812920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.
    Ning K; Ng HK; Leong HW
    Genome Inform; 2007; 19():119-30. PubMed ID: 18546510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of posttranslational modifications of proteins by tandem mass spectrometry.
    Larsen MR; Trelle MB; Thingholm TE; Jensen ON
    Biotechniques; 2006 Jun; 40(6):790-8. PubMed ID: 16774123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).
    Bonneil E; Pfammatter S; Thibault P
    J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-Independent Acquisition Proteomics.
    Haynes SE; Polasky DA; Dixit SM; Majmudar JD; Neeson K; Ruotolo BT; Martin BR
    Anal Chem; 2017 Jun; 89(11):5669-5672. PubMed ID: 28471653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison at the peptide level with post-translational modification consideration reveals more differences between two unenriched samples.
    Yin J; Shao C; Jia L; Gao Y
    Rapid Commun Mass Spectrom; 2014 Jun; 28(12):1364-70. PubMed ID: 24797947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.