These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27976385)

  • 1. A Spatially Periodic Solute Boundary for MT3DMS and PHT3D.
    Laattoe T; Post VEA; Werner AD
    Ground Water; 2017 May; 55(3):419-427. PubMed ID: 27976385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial periodic boundary condition for MODFLOW.
    Laattoe T; Post VE; Werner AD
    Ground Water; 2014; 52(4):606-12. PubMed ID: 23808416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of Solute Transport in the Vadose Zone into the "HYDRUS Package for MODFLOW".
    Beegum S; Šimůnek J; Szymkiewicz A; Sudheer KP; Nambi IM
    Ground Water; 2019 May; 57(3):392-408. PubMed ID: 30062703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS.
    Morway ED; Niswonger RG; Langevin CD; Bailey RT; Healy RW
    Ground Water; 2013 Mar; 51(2):237-51. PubMed ID: 22834908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating MODFLOW-based reactive transport under radially symmetric flow conditions.
    Wallis I; Prommer H; Post V; Vandenbohede A; Simmons CT
    Ground Water; 2013; 51(3):398-413. PubMed ID: 22900478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PHT3D-UZF: A Reactive Transport Model for Variably-Saturated Porous Media.
    Wu MZ; Post VE; Salmon SU; Morway ED; Prommer H
    Ground Water; 2016 Jan; 54(1):23-34. PubMed ID: 25628017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach.
    Geng X; Boufadel MC; Xia Y; Li H; Zhao L; Jackson NL; Miller RS
    J Contam Hydrol; 2014 Sep; 165():37-52. PubMed ID: 25108178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axisymmetric Modeling Using MODFLOW-USG.
    Bedekar V; Scantlebury L; Panday S
    Ground Water; 2019 Sep; 57(5):772-777. PubMed ID: 30653671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified Mixed Lagrangian-Eulerian Method Based on Numerical Framework of MT3DMS on Cauchy Boundary.
    Suk H
    Ground Water; 2016 Jul; 54(4):508-20. PubMed ID: 26754057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal Hyporheic Zone Response to Water Table Fluctuations.
    Malzone JM; Anseeuw SK; Lowry CS; Allen-King R
    Ground Water; 2016 Mar; 54(2):274-85. PubMed ID: 26096382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel Processing Transport Model MT3DMS by Using OpenMP.
    Huang L; Wang L; Shao J; Liu X; Hao Q; Xing L; Zheng L; Xiao Y
    Int J Environ Res Public Health; 2018 May; 15(6):. PubMed ID: 29794989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of boundary hydraulics, dissolved oxygen, and dissolved organic carbon on growth and death dynamics of aerobic microbes in riverbed dune-induced hyporheic zones.
    Monterroso H; Widdowson MA; Lotts WS; Strom KB; Hester ET
    Sci Total Environ; 2024 Jan; 906():167401. PubMed ID: 37769729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discontinuous steady-state analytical solutions of the Boussinesq equation and their numerical representation by MODFLOW.
    Zaidel J
    Ground Water; 2013; 51(6):952-9. PubMed ID: 23387826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of oscillating flow on hyporheic zone development.
    Maier HS; Howard KW
    Ground Water; 2011; 49(6):830-44. PubMed ID: 21309768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tidal boundary conditions in SEAWAT.
    Mulligan AE; Langevin C; Post VE
    Ground Water; 2011; 49(6):866-79. PubMed ID: 21275984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability and comparison of hyporheic water temperatures and seepage fluxes in a small Atlantic salmon stream.
    Alexander MD; Caissie D
    Ground Water; 2003; 41(1):72-82. PubMed ID: 12533078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergence of Groundwater Discharge through the Hyporheic Zone of Streams.
    Mojarrad BB; Wörman A; Riml J; Xu S
    Ground Water; 2023 Jan; 61(1):66-85. PubMed ID: 35984214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analytical approach for flow analysis in aquifers with spatially varying top boundary.
    Zlotnik VA; Toundykov D; Cardenas MB
    Ground Water; 2015; 53(2):335-41. PubMed ID: 24902854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession.
    Malzone JM; Lowry CS
    Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the In-Stream Structure on Solute Transport in the Hyporheic Zone.
    Li H; Liu Y; Feng J; Liu D; Li Y; Chen L; Xiao J
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.