These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites. Camarero JJ; Gazol A; Galván JD; Sangüesa-Barreda G; Gutiérrez E Glob Chang Biol; 2015 Feb; 21(2):738-49. PubMed ID: 25362899 [TBL] [Abstract][Full Text] [Related]
3. Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges. Sánchez-Salguero R; Camarero JJ; Gutiérrez E; González Rouco F; Gazol A; Sangüesa-Barreda G; Andreu-Hayles L; Linares JC; Seftigen K Glob Chang Biol; 2017 Jul; 23(7):2705-2719. PubMed ID: 27782362 [TBL] [Abstract][Full Text] [Related]
4. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example]. Dai EF; Zhou H; Wu Z; Wang XF; Xi WM; Zhu JJ Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3059-3069. PubMed ID: 29726129 [TBL] [Abstract][Full Text] [Related]
5. Variable influence of photosynthetic thermal acclimation on future carbon uptake in Australian wooded ecosystems under climate change. Bennett AC; Knauer J; Bennett LT; Haverd V; Arndt SK Glob Chang Biol; 2024 Jan; 30(1):e17021. PubMed ID: 37962105 [TBL] [Abstract][Full Text] [Related]
6. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests. Barbeta A; Peñuelas J Glob Chang Biol; 2017 Dec; 23(12):5054-5068. PubMed ID: 28544424 [TBL] [Abstract][Full Text] [Related]
7. Future carbon balance of China's forests under climate change and increasing CO2. Ju WM; Chen JM; Harvey D; Wang S J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919 [TBL] [Abstract][Full Text] [Related]
8. The high climate vulnerability of western Mediterranean forests. Hidalgo-Triana N; Solakis A; Casimiro-Soriguer F; Choe H; Navarro T; Pérez-Latorre AV; Thorne JH Sci Total Environ; 2023 Oct; 895():164983. PubMed ID: 37353024 [TBL] [Abstract][Full Text] [Related]
9. Recent CO Zuidema PA; Heinrich I; Rahman M; Vlam M; Zwartsenberg SA; van der Sleen P Glob Chang Biol; 2020 Jul; 26(7):4028-4041. PubMed ID: 32441438 [TBL] [Abstract][Full Text] [Related]
10. Climate change risk to forests in China associated with warming. Yin Y; Ma D; Wu S Sci Rep; 2018 Jan; 8(1):493. PubMed ID: 29323158 [TBL] [Abstract][Full Text] [Related]
11. The impact of rising CO Sperry JS; Venturas MD; Todd HN; Trugman AT; Anderegg WRL; Wang Y; Tai X Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25734-25744. PubMed ID: 31767760 [TBL] [Abstract][Full Text] [Related]
12. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling. Feng X; Uriarte M; González G; Reed S; Thompson J; Zimmerman JK; Murphy L Glob Chang Biol; 2018 Jan; 24(1):e213-e232. PubMed ID: 28804989 [TBL] [Abstract][Full Text] [Related]
13. Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations. Domec JC; Ogée J; Noormets A; Jouangy J; Gavazzi M; Treasure E; Sun G; McNulty SG; King JS Tree Physiol; 2012 Jun; 32(6):707-23. PubMed ID: 22467712 [TBL] [Abstract][Full Text] [Related]
14. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape. Helbig M; Chasmer LE; Desai AR; Kljun N; Quinton WL; Sonnentag O Glob Chang Biol; 2017 Aug; 23(8):3231-3248. PubMed ID: 28132402 [TBL] [Abstract][Full Text] [Related]
15. An improved approach for remotely sensing water stress impacts on forest C uptake. Sims DA; Brzostek ER; Rahman AF; Dragoni D; Phillips RP Glob Chang Biol; 2014 Sep; 20(9):2856-66. PubMed ID: 24464936 [TBL] [Abstract][Full Text] [Related]
16. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Restrepo-Coupe N; Levine NM; Christoffersen BO; Albert LP; Wu J; Costa MH; Galbraith D; Imbuzeiro H; Martins G; da Araujo AC; Malhi YS; Zeng X; Moorcroft P; Saleska SR Glob Chang Biol; 2017 Jan; 23(1):191-208. PubMed ID: 27436068 [TBL] [Abstract][Full Text] [Related]
17. Predicting the responses of forest distribution and aboveground biomass to climate change under RCP scenarios in southern China. Dai E; Wu Z; Ge Q; Xi W; Wang X Glob Chang Biol; 2016 Nov; 22(11):3642-3661. PubMed ID: 27029713 [TBL] [Abstract][Full Text] [Related]
18. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Jump AS; Ruiz-Benito P; Greenwood S; Allen CD; Kitzberger T; Fensham R; Martínez-Vilalta J; Lloret F Glob Chang Biol; 2017 Sep; 23(9):3742-3757. PubMed ID: 28135022 [TBL] [Abstract][Full Text] [Related]
19. Evaluating carbon fluxes of global forest ecosystems by using an individual tree-based model FORCCHN. Ma J; Shugart HH; Yan X; Cao C; Wu S; Fang J Sci Total Environ; 2017 May; 586():939-951. PubMed ID: 28214117 [TBL] [Abstract][Full Text] [Related]
20. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Girardin MP; Hogg EH; Bernier PY; Kurz WA; Guo XJ; Cyr G Glob Chang Biol; 2016 Feb; 22(2):627-43. PubMed ID: 26507106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]