These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 27976520)
1. Synthesis of Concentrated Methylcyclohexane as Hydrogen Carrier through Photoelectrochemical Conversion of Toluene and Water. Kageshima Y; Minegishi T; Hisatomi T; Takata T; Kubota J; Domen K ChemSusChem; 2017 Feb; 10(4):659-663. PubMed ID: 27976520 [TBL] [Abstract][Full Text] [Related]
2. Conversion of toluene and water to methylcyclohexane and oxygen using niobium-doped strontium titanate photoelectrodes. Kalousek V; Wang P; Minegishi T; Hisatomi T; Nakagawa K; Oshima S; Kobori Y; Kubota J; Domen K ChemSusChem; 2014 Sep; 7(9):2690-4. PubMed ID: 25044371 [TBL] [Abstract][Full Text] [Related]
3. Surface Protective and Catalytic Layer Consisting of RuO Kageshima Y; Minegishi T; Sugisaki S; Goto Y; Kaneko H; Nakabayashi M; Shibata N; Domen K ACS Appl Mater Interfaces; 2018 Dec; 10(51):44396-44402. PubMed ID: 30489070 [TBL] [Abstract][Full Text] [Related]
4. Photoelectrochemical conversion of toluene to methylcyclohexane as an organic hydride by Cu2ZnSnS4-based photoelectrode assemblies. Wang P; Minegishi T; Ma G; Takanabe K; Satou Y; Maekawa S; Kobori Y; Kubota J; Domen K J Am Chem Soc; 2012 Feb; 134(5):2469-72. PubMed ID: 22280438 [TBL] [Abstract][Full Text] [Related]
5. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101 [TBL] [Abstract][Full Text] [Related]
6. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231 [TBL] [Abstract][Full Text] [Related]
7. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. Seitz LC; Chen Z; Forman AJ; Pinaud BA; Benck JD; Jaramillo TF ChemSusChem; 2014 May; 7(5):1372-85. PubMed ID: 24692256 [TBL] [Abstract][Full Text] [Related]
8. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis. Pang H; Masuda T; Ye J Chem Asian J; 2018 Jan; 13(2):127-142. PubMed ID: 29193762 [TBL] [Abstract][Full Text] [Related]
9. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion. Zhang D; Shi J; Zi W; Wang P; Liu SF ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741 [TBL] [Abstract][Full Text] [Related]
10. Solar-Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions. Choi DS; Kim J; Hollmann F; Park CB Angew Chem Int Ed Engl; 2020 Sep; 59(37):15886-15890. PubMed ID: 32495457 [TBL] [Abstract][Full Text] [Related]
11. Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction. Barawi M; Alfonso-González E; López-Calixto CG; García A; García-Sánchez A; Villar-García IJ; Liras M; de la Peña O'Shea VA Small; 2022 Sep; 18(37):e2201351. PubMed ID: 35971163 [TBL] [Abstract][Full Text] [Related]
12. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling. Zhang X; Bieberle-Hütter A ChemSusChem; 2016 Jun; 9(11):1223-42. PubMed ID: 27219662 [TBL] [Abstract][Full Text] [Related]
13. Photoelectrochemical hydrogen production from biomass derivatives and water. Lu X; Xie S; Yang H; Tong Y; Ji H Chem Soc Rev; 2014 Nov; 43(22):7581-93. PubMed ID: 24599050 [TBL] [Abstract][Full Text] [Related]
14. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of nanovoid Bi(2)WO(6) 2D ordered arrays as photoanodes for photoelectrochemical water splitting. Zhang L; Bahnemann D ChemSusChem; 2013 Feb; 6(2):283-90. PubMed ID: 23325719 [TBL] [Abstract][Full Text] [Related]
16. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation. Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756 [TBL] [Abstract][Full Text] [Related]
17. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO Iwase A; Kudo A; Numata Y; Ikegami M; Miyasaka T; Ichikawa N; Kato M; Hashimoto H; Inoue H; Ishitani O; Tamiaki H ChemSusChem; 2017 Nov; 10(22):4420-4423. PubMed ID: 28960942 [TBL] [Abstract][Full Text] [Related]
18. Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells. Ihssen J; Braun A; Faccio G; Gajda-Schrantz K; Thöny-Meyer L Curr Protein Pept Sci; 2014; 15(4):374-84. PubMed ID: 24678669 [TBL] [Abstract][Full Text] [Related]
20. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation. Jin Z; Li P; Xiao D ChemSusChem; 2017 Feb; 10(3):483-488. PubMed ID: 27863111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]